| 研究生: |
林玄昇 Lin, Hsuan-Sheng |
|---|---|
| 論文名稱: |
以電紡絲法製備尼龍6及聚氧化乙烯/尼龍6芯鞘型纖維 Preparation of Nylon 6 and PEO/Nylon 6 core/shell fibers via electrospinning |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 電紡絲 、尼龍 6 、聚氧化乙烯 、芯鞘型纖維 |
| 外文關鍵詞: | electrospinning, Nylon 6, PEO, core/shell fiber |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究配製不同濃度尼龍 6/甲酸溶液,以電紡絲法製備尼龍 6纖維,並探討纖維形態的變化;另外以WAXD、SAXS和FTIR探討升溫時纖維內晶型的變化。由SEM觀察得知濃度高的溶液所製備的纖維較粗,22 wt%溶液所得纖維形態為彩帶狀。DSC升溫過程中發現彩帶狀纖維在約235 oC存在一特殊的高溫相,其量佔纖維結晶度的28 %左右。改變電紡環境,發現濕度並非高溫相形成的主要原因。為了觀察此高溫相的晶型,以同時WAXD/SAXS探討逐步升溫纖維熔化過程,發現在230 oC已無明顯晶體結構。然而以FTIR偵測在235 oC下仍存在一與alpha晶型相關之 1201 cm-1吸收峰。
在芯鞘型纖維製備方面以尼龍 6/甲酸為外管流體,聚氧化乙烯/氯仿為內管流體,探討流量和內管溶液濃度對同軸電紡製程的影響。觀察cone內部的變化,發現在較高流量下和內管溶液濃度較高時,cone內部可以穩定;由SEM觀察以水萃取聚氧化乙烯後的芯鞘型纖維形態和其截面,可看到破裂或坍塌狀的Nylon 6纖維和孔洞直徑大小不一的Nylon 6中空纖維。
Our research is to prepare Nylon 6 fibers by electrospinning of solutions with different concentrations in formic acid. WAXD, SAXS, and FTIR were used to study the crystal modification and effect of annealing temperature on crystal transformation in Nylon 6 fibers. As demonstrated by SEM, ribbon-like fibers were obtained when the 22 wt% solution was electrospun. DSC heating traces on the ribbon-like fibers exhibited an unusually high melting temperature of ~235 oC, indicating the presence of a high-temperature phase (HT phase). Depending on the processing conditions, the contents of HT phase could be as high as 28 % of the fiber crystallinity. To change surrounding conditions of electrospinning, humidity is not the factor of formation of the HT phase. To reveal the HT phase, simultaneous WAXD and SAXS using synchrotron radiation on the fiber mats during stepwise annealing were performed, but featureless structures were obtained at temperatures higher than 230 oC. In contrast, in-situ FTIR spectra clearly demonstrated the residual presence of an alpha form-related band of 1201 cm-1 at 235 oC.
To prepare core/shell fibers, we used Nylon 6/formic acid as shell fluid and PEO/chloroform as core fluid, and discussed the effects of flow rate and concentration of core solution on the coaxial electrospinning. We observed the variation of cone. The cone could be stable when flow rate was higher and concentration of core solution was higher. After the PEO core component had been extracted by H2O, the morphology of hollow Nylon 6 fiber were collapsed or cracked. Different diameters of holes of hollow Nylon 6 fiber were also obtained after extracted.
[1] Y. Liu, L. Cui, F. Guan, Y. Gao, N. E. Hedin, L. Zhu and H. Fong, "Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers", Macromolecules, 40, 6283-6290 (2007).
[2] F. Auriemma, V. Petraccone, L. Parravicini and P. Corradini, "Mesomorphic Form (b) of Nylon 6", Macromolecules, 30, 7554-7559 (1997).
[3] K. Miyasaka and K. Makishima, "Transition of Nylon 6 g-Phase Crystals by Stretching in the Chain Direction", Journal of Polymer Science: partA-1, 5, 3017-3027 (1967).
[4] T. D. Fornes and D. R. Paul, "Crystallization behavior of nylon 6 nanocomposites", Polymer, 44, 14, 3945-3961 (2003).
[5] K. Kaji and I. Sakurada, "Crystallite Size Determination of Nylon 6 by Wallner’s Method", JOURNAL OF POLYMER SCIENCE: Polymer Physics Edition, 12, 1491-1497(1974).
[6] Y. Li and W. A. G. III, "Nylon 6 Crystal Structures, Folds, and Lamellae from Theory", Macromolecules, 35, 8440-8455 (2002).
[7] F. E. Bailey and J. V. Koleske, Polyethylene oxide. Academic Press: New York, USA . 1976.
[8] H. Tadokoro, "Structure of Crystalline Polyethers", Macromoles Review, 119, (1966).
[9] S. Radhakrishnan and P. D. Venkatachalapathy, "Effect of casting solvent on the crystallization in PEO/PMMA blends", Polymer, 37, 16, 3749-3752 (1996).
[10] J. Zeleny, "The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces", Journal of Physical Review, 3, 69 (1914).
[11] F. Anton "Process and apparatus for preparing artificial threads." 1934.
[12] D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning", Nanotechnology, 7, 216-223 (1996).
[13] H. Fong, I. Chun and D. H. Reneker, "Beaded nanofibers formed during electrospinning", Polymer, 40, 4585-4592 (1999).
[14] G. Taylor, "Disintegration of Water Drops in an Electric Field", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 280, 383-397 (1964).
[15] M. Cloupeaua and B. Prunet-Focha, "Electrostatic spraying of liquids in cone-jet mode", Journal of Electrostatics, 22, 2, 135-159 (1989).
[16] A. Barrero, A. M. Gañán-Calvo, J. Dávila, A. Palacio and E. Gómez-González, "Low and high Reynolds number flows inside Taylor cones", Physical Review E, 58, 6, (1998).
[17] J. Doshi. University of Akron, Akron, Ohio, 1994.
[18] H. Xu, D. Galehouse and D. H. Reneker, "Study of the relationship between jet diameter and interference color during electrospinning", Polymer Materials: Science & Engineering, 88, 37 (2003).
[19] Y. M. Shin, M. M. Hohman, M. P. Brenner and G. C. Rutledge, "Experimental characterization of electrospinning: the electrically forced jet and instabilities", Polymer, 42, 25, (2001).
[20] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers", Journal of Colloid and Interface Science, 36, 1, 71-79 (1971).
[21] A. L. Yarin, S. Koombhongse and D. H. Reneker, "Bending instability in electrospinning of nanofibers", Journal of Applied Physics, 89, 5, 3018-3026 (2001).
[22] S. Koombhongse, W. Liu and D. H. Reneker, "Flat Polymer Ribbons and Other Shapes by Electrospinning", Journal of Polymer Science Part B: Polymer Physics, 39, 21, 2598 (2001).
[23] K.-H. Lee, K.-W. Kim, A. Pesapane, H.-Y. Kim and J. F. Rabolt, "Polarized FT-IR Study of Macroscopically Oriented Electrospun Nylon-6 Nanofibers", Macromolecules, 41, 1494-1498 (2008).
[24] Y. Li, Z. Huang and Y. L., "Electrospinning of nylon-6,66,1010 terpolymer", European Polymer Journal, 42, 7, 1696-1704 (2006).
[25] J. S. Stephens, D. B. Chase and J. F. Rabolt, "Effect of the Electrospinning Process on Polymer Crystallization Chain Conformation in Nylon-6 and Nylon-12", Macromolecules, 37, 877-881, (2004).
[26] C. B. Giller, D. B. Chase, J. F. Rabolt and C. M. Snively, "Effect of solvent evaporation rate on the crystalline state of electrospun Nylon 6", Polymer, 51, 18, 4225-4230 (2010).
[27] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff and A. Greiner, "compound core-shell polymer nanofibers by co-electrospinning", Advanced Materials, 15, 22, 1929 (2003).
[28] M. Wang, J. H. Yu, D. L. Kaplan and G. C. Rutledge, "Production of Submicron Diameter Silk Fibers under Benign Processing Conditions by Two-Fluid Electrospinning", Macromolecules, 39, 1102-1107 (2006).
[29] S. Wongsasulak, K. M. Kit, D. J. McClements, T. Yoovidhya and J. Weiss, "The effect of solution properties on the morphology of ultrafine electrospun egg albumen–PEO composite fibers", Polymer, 48, 2, 448-457 (2007).
[30] D. Li, J. T. McCann and Y. Xia, "Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces", Small, 1, 1, 83-86 (2004).
[31] I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez and A. M. Gañán-Calvo, "Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets", Science, 295, 5560, 1695-1698 (2002).
[32] D. Li and Y. Xia, "Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning", Nano Letters, 4, 5, 933–938 (2004).
[33] J. T. McCann, D. Li and Y. Xia, "Electrospinning of nanofibers with core-sheath, hollow, or porous structures", Journal of Materials Chemistry, 15, 7, 735 (2005).
[34] Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim and S. Ramakrishna, "Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release", Biomacromolecules, 7, 1049-1057 (2006).
[35] D.-G. Yu, C. J. Branford-White, N. P. Chatterton, K. White, L.-M. Zhu, X.-X. Shen and W. Nie, "Electrospinning of Concentrated Polymer Solutions", Macromolecules, 43, 24, 10743-10746 (2010).
[36] G. Gurato, A. Fichera, F. Z. Grandi, R. Zannetti and P. Canal, "Crystallinity and polymorphism of 6-polyamide", Die Makromolekulare Chemie, 175, 3, 953-975 (1974).
[37] D. M. Lincoln, R. A. Vaia, Z.-G. Wang, B. S. Hsiao and R. Krishnamoorti, "Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites", Polymer, 42, 25, 9975 (2001).
[38] Y. P. Khanna, "Overview of transition phenomenon in nylon 6", Macromolecules, 25, 12, 3298 (1992).
[39] S. Tripatanasuwan, Z. Zhong and D. Reneker, "Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution", Polymer, 48, 19, 5742-5746 (2007).
[40] C. Wang, H.-S. Chien, C.-H. Hsu, Y.-C. Wang, C.-T. Wang and H.-A. Lu, "Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures", Macromolecules, 40, 22, 7973-7983 (2007).
[41] S. Vrieze, T. Camp, A. Nelvig, B. Hagström, P. Westbroek and K. Clerck, "The effect of temperature and humidity on electrospinning", Journal of Materials Science, 44, 5, 1357-1362 (2008).
[42] N. S. Murthy, S. A. Curran, S. M. Aharoni and H. Minor, "Premelting crystalline relaxations and phase transitions in nylon 6 and 6,6", Macromolecules, 24, 11, 3215-3220 (1991).
[43] R. Brill, J. Prakt. Chem., 161, 49-64 (1942).