簡易檢索 / 詳目顯示

研究生: 黃仁輝
Huang, Ren-Huei
論文名稱: 使用C面及圖案化藍寶石基板成長電子阻障層結構氮化銦鎵/氮化鎵發光二極體之研究
Investigation of InGaN/GaN light-emitting diodes with electron blocking layer grown on c-plane and patterned sapphire substrates
指導教授: 張守進
Chang, Shoou-jinn
劉冠廷
Liu, Kuan-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 81
中文關鍵詞: 電子阻障層圖案化的藍寶石基板發光二極體
外文關鍵詞: LED, electron blocking layer, patterned sapphire substrate
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以氮化物為基礎的藍綠光發光二極體 (Light Emitting Diodes, LEDs) 之應用上,如何提升亮度是一個重要的課題。本論文中,我們使用圖案化之藍寶石基板(Patterned Sapphire Substrate, PSS),以及在發光二極體的結構中加入電子阻障層 (Electron Blocking Layer, EBL)來改善亮度的問題。
    首先,我們利用感應耦合電漿蝕刻機 (Inductively Coupled Plasma, ICP) 在C面藍寶石基板上進行乾式蝕刻製作圖案,接著利用有機金屬化學氣相沉積法 (Metalorganic Chemical Vapor Deposition, MOCVD)在有圖案化的藍寶石基板上以及傳統C面藍寶石基板上 (C-face Planar Sapphire Substrate, CSS) 成長發光二極體的結構。利用掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 觀察出發光二極體成長在有圖案化基板上之缺陷密度比成長傳統基板上者來的低,另外利用半導體參數分析儀 (Semiconductor Parameter Analyzer) 量測之漏電流,在有圖案化基板上的發光二極體會比傳統基板者來的小。同時,電激發光 (Electroluminescence, EL)量測上,操作在20 mA時,有圖案化基板的發光二極體的電激發光強度比傳統發光二極體高出58.7%。有圖案化基板的發光二極體的輸出功率以及外部量子效率(External Quantum Efficiency, EQE) 分別為3.7 mW及5.03%,而傳統發光二極體分別為2.1 mW及2.86%。這些現象是由於使用圖案化基板可以減少缺陷的產生而且可以改變光子的移動路徑,使得亮度有效的提升。
    此外,我們針對成長在有圖案化基板上的發光二極體結構中加入一層電子阻障層來和傳統發光二極體做分析比較。利用半導體參數分析儀所量測之漏電流,多了電子阻障層的發光二極體比傳統發光二極體更加低減少。同時,電激發光量測上,操作在20 mA時,有電子阻障層的發光二極體的電激發光強度比傳統發光二極體高出2.7倍。有電子阻障層的發光二極體的輸出功率以及外部量子效率分別為6.5 mW及8.89%。由以上的實驗結果在有圖案化基板上含有電子阻障層的發光二極體中,使得部份的電子在偏壓工作時返回到量子井 (Quantum Well) 中,增加電子電洞複合而形成光子的效率,因此在輸出功率上有效的提升。

    Nitride-based blue and green light-emitting diodes (LEDs) grown on sapphire substrate are already commercially available. However, the improvement of output power is one of the most important issues for GaN-based LEDs application. In this study, the InGaN/GaN LED grown on patterned sapphire substrate using dry etching technology have been investigated. In addition, the LED with electron blocking layer structure grown on patterned sapphire substrate was also fabricated for improving LED performance.
    We firstly used inductively coupled plasma (ICP) technique to fabricate pattern on c-face planar sapphire substrate and then grow the LED structure on PSS (i.e. PSS LED) and conventional c-face planar sapphire substrate (i.e. CSS LED) by metalorganic chemical vapor deposition (MOCVD), respectively. We observed the defect density of PSS LED is less than that of CSS LED by using scanning electron microscopy (SEM). Semiconductor parameter analyzer is performed to measure leakage current of LEDs. It was found that the leakage current of PSS LED is lower than that of CSS LED. Furthermore, the electroluminescence (EL) intensity of PSS LED operating at 20 mA is improved to be 58.7% than that of CSS LED. The output power and external quantum efficiency (EQE) of PSS LED without epoxy resin package operating at 20 mA are 3.7 mW and 5.03%, respectively. Compared with the PSS LED, the output power and EQE of CSS LED without epoxy resin package operating at 20 mA are 2.1 mW and 2.86%, respectively. These observed results are attributed to the decreasing of defect density and changing the ray trace of photons by using PSS.
    On the other hand, LED with EBL structure grown on PSS (i.e. PSS-EBL LED) was also fabricated to compare with conventional LED without EBL structure grown on c-face planar sapphire substrate (i.e. CSS LED). Semiconductor parameter analyzer measurement shows that the leakage current of PSS-EBL LED is much lower than that of CSS LED. Moreover, the EL intensity of PSS-EBL LED is larger than CSS LED around 2.7 times. The output power and EQE of PSS-EBL LED operating at 20 mA without epoxy resin package are 6.5 mW and 8.89%, respectively. The high performance of PSS-EBL LED are all attributed to EBL limits a part of electrons overflow to p-GaN and back to quantum well. Therefore, electrons have more opportunities to combine with holes which results in much more photons and enhancing the luminance of LED.

    Abstract (Chinese).......................................I Abstract (English)......................................IV Acknowledge............................................VII Contents..............................................VIII Figure Captions..........................................X Table Captions........................................XIII Chapter1 Introduction 1.1 Background.........................................1 1.2 Overview of this thesis............................7 Chapter 2 Measurement system and basic theory 2.1 Measurement........................................9 2.1.1 Atomic Force Microscopes (AFM).................9 2.1.2 Field Emission Scanning Electron Microscope (FE-SEM).....................................10 2.2 Basic theory......................................11 2.2.1 Dry Etching..................................11 2.2.2 Patterned Sapphire Substrate (PSS)...........13 Chapter 3 GaN-based light emitting diodes grown on the patterned sapphire substrate (PSS) 3.1 Background........................................21 3.2 Growing LED structure on patterned and planar sapphire substrate by MOCVD.......................24 3.2.1 Fabrication of PSS............................24 3.2.2 Fabrication procedure of LEDs.................24 3.2.3 The characteristics of PSS LED and CSS LED....27 3.2.4 Summary.......................................30 Chapter 4 GaN-based light emitting diodes with electron blocking layer (EBL) grown on the PSS 4.1 Background........................................45 4.2 Growing LED structure with EBL on PSS by MOC......46 4.2.1 Fabrication procedure of LED..................46 4.2.2 The characteristics of PSS-EBL LED and CSS LED ..............................................47 4.2.3 Summary.......................................51 4.3 GaN-based LD with and without EBL grown on PSSs...52 4.3.1 The characteristics of PSS-EBL LED and PSS LED ..............................................52 4.3.2 Summary.......................................55 Chapter 5 Conclusion and future work 5.1 Conclusion........................................73 5.2 Future work.......................................75 Reference...............................................76

    [01] Y. Matsushita, T. Uetani, T. Kunisato, J. Suzuki, Y. Ueda, K. Yagi, T. Yamaguchi, and T. Niina, J. J. Appl. Phys., 34, 1833 (1995).
    [02] J. D. Brown, J. T. Swindell, M. A. L. Johnson, Yu Zhonghai, J. F. Schetzina, G. E. Bulman, K. Doverspike, S. T. Sheppard, T. W. Weeks, M. Leonard, H. S. Kong, H. Dieringer, C. Carter, and J. A. Edmond, Nitride Semiconductor or Symposium, Mat. Res. Soc., 1179 (1998).
    [03] M. A. Haase, J. Qinu, J. M. Depuydt, and H. Cheng, Appl. Phys. Lett., 59, 1272 (1991).
    [04] H. Jeon, J. Ding, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, R. L. Gunshor, G. C. Hua, and N. Otsuka, Appl. Phys. Lett., 60, 2045 (1992).
    [05] W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, Appl. Phys. Lett., 60, 1999 (1992).
    [06] H. Morkoc, S. Strite, G. B. Gao , M. E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys., 76, 1363 (1994).
    [07] T. Nishida, N. Kobayashi, and T. Ban, Appl. Phys. Lett., 82, 1 (2003).
    [08] J. P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunex, M. S. Shur, R. Gaska, M. Shatalov, J. W. Yang, and M. A. Khan, Appl. Phys. Lett., 85, 5534 (2004).
    [09] S. Shakya, K. H. Kim, and H. X. Jiang, Appl. Phys. Lett., 85, 142 (2004).
    [10] E. F. Schubert, 2nd ed., Cambridge University Press, Cambridge, 346 (2006).
    [11] S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett., 42, 427 (1983).
    [12] H. Amano, N. Sawaki, and I. Akasaki, Appl. Phys. Lett., 48, 353 (1986).
    [13] W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, P. Han and R. H. Horng, J. J. Appl. Phys., 45, 3430 (2006).
    [14] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, and Y. S. Park, Appl. Phys. Lett., 87, 203805 (2005).
    [15] S. H. Huang, R. H. Horng, K. S. Wen, Y. F. Lin, K. W. Yen, and D. S. Wuu, IEEE Photonic Tech. Lett., 18, 24 (2006).
    [16] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, and T. C. Hsu, IEEE QE., 41, 11 (2005).
    [17] A. Hayes, J.F. Welden, E. Ostun, and R.J. Gambino, Data Storage 43 (1995).
    [18] J. W. Kim, Y. C. Kim, and W. J. Lee, J. Appl. Phys., 78, 2045 (1995).
    [19] J. B. Fedison, T. P. Chow, H. Lu, and I. B. Bhat, J. Electrochem. Soc., 144, 221 (1997).
    [20] X. Dongzhu, Z. Dezhang, P. Haochang, X. Hongjie, and R. Zongxin, J. Appl. Phys., 31, 1647 (1998).
    [21] H. Ishiwara, H. Yamamoto, and S. Furukawa, Appl. Phys. Lett., 43, 1028 (1983).
    [22] M. Grundmann, A. Krost, D. Bimberg, O. Ehrmann, and H. Cerva, Appl. Phys. Lett., 60, 3292 (1992).
    [23] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taduchi, J. J. Appl. Phys., 40, 583 (2001).
    [24] S. J. Chang, C. S. Chang, Y. K. Su, IEEE Photonic Tech. Lett., 9, 1199 (1997).
    [25] E. L. Piner, M. K. Behani, N. A. Ei-Masry, F. G. Mcintosh, J. C. Roberts, K. S. Boutros and S. M. Bedair, Appl. Phys. Lett., 70, 461 (1997).
    [26] S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, Appl. Phys. Lett., 69, 4188 (1996).
    [27] K. Kusakabe and K. Ohkawa, J. J. Appl. Phys., 44, 7931 (2005).
    [28] H. Masui, A. Chakraborty, B. A. Haskell, U. K. Mishra, J. S. Speck, S. Nakamura, and S. P. Denbaars, J. J. Appl. Phys., 44, 1329 (2005).
    [29] T. C. Wang, T. C. Lu, T. S. Ko, H. C. Kao, M. Yu, S. C. Wang, C. C. Chuo, Z. H. Lee, and H. G. Chen, Appl. Phys. Lett., 89, 251109 (2006).
    [30] H. Amano, M. Kito, K. hiramatsu, and I. Akasaki, J. J. Appl. Phys., 28, 2112 (1989).
    [31] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, J. J. Appl. Phys., 31, 139 (1992).
    [32] S. Nakamura, N. Iwasa, and M. Senoh, US patent NO. 5468687 (1995).
    [33] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, J. J. Appl. Phys., 1, 1258 (1992).
    [34] S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett., 62, 2390 (1993).
    [35] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994).
    [36] S. Nakamura, T. Yamada, M. Senoh, M. Yamada and K. Bando, US patent NO. 5563422 (1996).
    [37] D. Kuo, and S. Hsu, US patent NO. 6515306 (2003).
    [38] N. Shibata, T. Uemura, J. Umezaki, T. Kozawa, M. Asai, T. Mori, and T. Ohwaki, US patent NO. 6008539 (1999).
    [39] T. Uemura, N. Shibata, S. Noiri, and S. Horiuchi, US patent NO. 6734468 (2004).
    [40] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, and F. R. Chen, J. J. Kai, J. Appl. Phys., 86, 4491 (1998).
    [41] K. K. Shih, J. K. Ho, C. C. Chiu and M. H. Hon, TW patent NO. 102019 (1997).
    [42] I. Masayuki, and N. Koichi, Japan patent NO. 10-135519 (1997).
    [43] J. K. Sheu, US patent NO. 6686610 (2004).
    [44] http://140.116.176.21/technique/20071112/SEM7000.pdf
    [45] E. Fred Schubert, “Light-Emitting Diodes,” second edition, 86 (2006).
    [46] S. Nakamura, and M. Senoh, Appl. Phys. Lett., 4, 3 (1998).
    [47] H. K. Cho, D. C. Kim, H. J. Lee, H. S. Cheong, and C. H. Hong, Superlat. & Microst., 36, 385 (2004).
    [48] K. J. Linthicum, T. Gehrke, D. B. Thomson, and K. M. Tracy, J. Nitride Semicond. Res., 4S1, G4.9 (1999).
    [49] A. M. Roskowski, P. Q. Miraglia, E. A. Preble, S. Einfeldt, and R. F. Davis, J. Crystal Growth, 241, 141 (2002).
    [50] I. Kidoguchi, A. Ishibashi, G. Sugahara and Y. Ban, Appl. Phys. Lett., 76, 3768 (2000).
    [51] Y. Kawaguhi, G. Sugahara, A. Mochida, T. Shimamoto, A. Ishibashi, and T. Yokogawa, Phys. Stat. sol. (c), 0, 2107 (2003).
    [52] Y. Chen, R. Schneider, S. Y. Wang, R. S. Kem, C. H. Chen, and C. P. Kuo, Appl. Phys. Lett., 75, 2062 (1999).
    [53] C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, Appl. Phys. Lett., 77, 3233 (2000).
    [54] E. Fred Schubert, “Light-Emitting Diodes,” second edition, 91 (2006).
    [55] E. F. Schubert and J. K. Kim, Science, 308, 1274 (2005).
    [56] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, S. J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen, and B. R. Huang, IEEE Photonic Tech. Lett., 14, 1668 (2002).
    [57] C. F. Shen, S. J. Chang , W. S. Chen, T. K. Ko, C. T. Kuo, and S. C. Shei, IEEE Photonic Tech. Lett., 19, 780 (2007).
    [58] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, J. Appl. Phys., 93, 9383 (2003).
    [59] H. W. Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang, and C. C. Yu, IEEE Photonic Tech. Lett., 17, 291 (2005).
    [60] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C.T. Lee, IEEE Photonic Tech. Lett., 16, 1447 (2004).
    [61] A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett., 71, 2259 (1997).
    [62] T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, Appl. Phys. Lett., 71, 2472 (1997).
    [63] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, J. Crystal Growth, 221, 316 (2000).
    [64] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, J. J. Appl. Phys., 40, 583 (2001).
    [65] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, J. J. Appl. Phys., 41, 1431 (2002).
    [66] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, IEEE Photonic Tech. Lett., 17, 288 (2005).
    [67] Z. H. Feng and K. M. Lau, IEEE Photonic Tech. Lett., 17, 1812 (2005).
    [68] Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C.Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, and B. J. Lee, Mater. Sci. Eng., 122, 184 (2005).
    [69] K. Tadatomo, H. Okagawaa, Y. Ohuchia, T. Tsunekawaa, H. Kudoa, Y. Sudoa, M. Katob, and T, Taguchic, Proc. SPIE, 5187, 243 (2004).
    [70] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE QE., 8, 744 (2002).
    [71] E. Fred Schubert, “Light-Emitting Diodes,” second edition, 81 (2006).
    [72] J. H. Lee, J. T. Oh, Y. C. Kim, IEEE Photonic Tech. Lett., 20, 1563 (2008).

    下載圖示 校內:2010-07-13公開
    校外:2012-07-13公開
    QR CODE