| 研究生: |
李靜敏 Li, Ching-Min |
|---|---|
| 論文名稱: |
外部調控因子變異性對酵母菌熱休克反應基因表現調控的影響 Effect of Trans regulatory variation on the expression divergence of heat shock response genes in Saccharomyces cerevisia |
| 指導教授: |
宋皇模
Sung, Huang-Mo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 基因調控機制 、熱休克 、同序列調控因子變異性 、外部調控因子變異性 |
| 外文關鍵詞: | transcriptional regulation, heat shock, cis regulatory variation, trans regulatory variation |
| 相關次數: | 點閱:108 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
族群中個體的差異來自於遺傳物質的變異,其中可能為DNA序列上蛋白質編碼區段的改變或是DNA序列上造成基因調控機制的不同所造成的。近來研究指出轉錄調控的變異也可能是導致物種演化的主因,但轉錄調控機制的改變在演化上還有很多是不明瞭的。本研究將探討酵母菌在逆境壓力下,特別是熱休克(heat shock)情況下,基因調控機制的演化,尤其是同序列調控因子變異性(cis regulatory variation)及外部調控因子變異性(trans regulatory variation)對酵母菌在熱休克壓力下對基因調控的影響。酵母菌在熱休克逆境下大約有324個基因表現會被誘發兩倍以上,以及約有484個基因的表現被抑制兩倍以上。本研究特別針對酵母菌中基因表現量會受高溫刺激而增加的基因,因為這些基因可能與酵母菌適應高溫環境有關。本研究從324個基因中隨機挑選65個具BY-RM基因多型性(polymorphism)的基因,利用焦磷酸定序定量分析技術檢測BY-RM對偶基因的相對表現量以推論同序列調控因子變異性,及外部調控因子變異性對BY-RM基因表現量差異的相對貢獻程度。本研究的結果顯示,BY和RM品系酵母菌不管是在一般環境下或是在熱休克壓力反應下,BY和RM對偶基因表現量的差異主要還是由外部調控因子變異性(trans major effect [trans variation effect alone + major trans variation effect])所造成的,其受外部調控因子變異性的基因比例分別是76.9% 和64.6%。然而在熱休克壓力反應下外部調控因子變異性效應則有減弱的現象,顯示同序列調控因子變異性對影響酵母菌族群在熱休克壓力的適應性上扮演了重要的角色。這65個熱休克反應基因在經歷熱休克壓力後,有46.2% (30/65)的基因其影響BY和RM對偶基因表現量差異的因素(同序列調控因子變異性或外部調控因子變異性)並不因熱休克刺激而改變、30.8% (20/65)的基因其影響BY和RM對偶基因表現量差異的因素則因熱休克刺激而使外部調控因子變異性的效應減弱以及23.1% (15/65)的基因其影響BY和RM對偶基因表現量差異的因素則因熱休克刺激而使外部調控因子變異性的效應增加。經過分析後外部調控因子變異性效應改變可能與基因本身上游轉錄因子個數多寡、熱休克相關轉錄因子種類的不同、TATA box調控元件的有無、基因所在染色體上的位置(左臂或右臂)、基因在染色體的排列位置及方向(華生、克里克股)及基因功能有關。
Phenotypic variation among individuals in a population can be due to DNA sequence variation expecially in protein coding regions or in gene regulatory elements. Recently, many reserch have pointed out that mutations in transcriptional regulation may have been a principal cause for phenotypic evolution. However, the mechanisms and the causes for evolutionary changes in transcriptional regulation are still poorly understood. In this thesis, I studied the relative evolutionary roles of cis and/or trans regulatory variation for yeast cells to cope with environmental changes, specifically focusing on the heat shock response. It has been shown that the expression of about 324 genes were induced at least two fold and about 484 genes whose expression was repressed at least two fold in response to heat shock in Saccharomyces cerevisiae. I especailly focus on the genes which were induced by at least two fold upon heat stress because these genes might be responsible for yeast to adapt for heat stress. In this study, I randomly select 65 genes which show polymorphism(s) in BY and RM strains from the 324 induced by at least two-fold genes upon heat stress for further pyrosequencing analysis to explore the relative contributions of cis and trans regulatory variations to expression divergence between BY and RM. My results indicated that the expression divergence of BY and RM were mainly due to trans regulatory variations in both normal condition and in heat stress condition, 76.9% and 64.6% of the genes were affected by the trans major regulatory variations, respectively. However, the effect of trans regulatory variation was decarase after heat shock stress. These results indicated that the cis regulatory variation may play an important role on the adaption to the heat stress environment. My results showed that 46.2% (30/65) of genes showed the same trend of cis or trans variation effect even after heat shock stress, 30.8% (20/65) of genes showed decrease of trans variation effect and 23.1% (15/65) of genes showed increase of trans variation effect after heat shock stress. Further analysis showed that the number of upstream transcription factors of the gene, TATA box regulatory elements, the location of genes on chromosomes left or right arm, the direction of genes at Watson or Crick strand and gene fuction may correlate with the increase or decarase in trans variation effect after heat shock. More detail analysis is presented in the main text.
Basehoar, A. D., S. J. Zanton, and B. F. Pugh. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116: 699-709. 2004.
Beck, T. and M. N. Hall. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689-692. 1999.
Boy-Marcotte, E., G. Lagniel, M. Perrot, F. Bussereau, A. Boudsocq, M. Jacquet, and J. Labarre. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33: 274-283. 1999.
Brem, R. B., G. Yvert, R. Clinton, and L. Kruglyak. Genetic dissection of transcriptional regulation in budding yeast. Science 296: 752-755. 2002.
Carroll, S. B. Endless forms: the evolution of gene regulation and morphological diversity. Cell 101: 577-580. 2000.
Causton, H. C., B. Ren, S. S. Koh, C. T. Harbison, E. Kanin, E. G. Jennings, T. I. Lee, H. L. True, E. S. Lander, and R. A. Young. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12: 323-337. 2001.
Cliften, P., P. Sudarsanam, A. Desikan, L. Fulton, B. Fulton, J. Majors, R. Waterston, B. A. Cohen, and M. Johnston. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 71-76. 2003.
Cowles, C. R., J. N. Hirschhorn, D. Altshuler, and E. S. Lander. Detection of regulatory variation in mouse genes. Nat Genet 32: 432-437. 2002.
Eastmond, D. L. and H. C. Nelson. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem 281: 32909-32921. 2006.
Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24: 469-486. 2000.
Estruch, F. and M. Carlson. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13: 3872-3881. 1993.
Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241-4257. 2000.
Georgiou, G. How to flip the (redox) switch. Cell 111: 607-610. 2002.
Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895-899. 2003.
Görner, W., E. Durchschlag, M.T. Martinez-Pastor, F. Estruch, G. Ammerer, B. Hamilton, H. Ruis, and C. Schüller. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12: 586-597. 1998.
Grably, M. R., A. Stanhill, O. Tell, and D. Engelberg. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol 44: 21-35. 2002.
Hahn, J. S. and D. J. Thiele. Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279: 5169-5176. 2004.
Harbison, C. T., D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac, T. W. Danford, N. M. Hannett, J. B. Tagne, D. B. Reynolds, J. Yoo, E. G. Jennings, J. Zeitlinger, D. K. Pokholok, M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S. Lander, D. K. Gifford, E. Fraenkel, and R. A. Young. Transcriptional regulatory code of a eukaryotic genome. Nature 431:99-104. 2004.
Hashikawa, N., N. Yamamoto, and H. Sakurai. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. J Biol Chem 282: 10333-10340. 2007.
Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66: 300-372. 2002.
Kobayashi, N. and K. McEntee. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13: 248-256. 1993.
Kobayashi, N. and K. McEntee. Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87: 6550-6554. 1990.
Landry, C. R., B. Lemos, S. A. Rifkin, W. J. Dickinson, and D. L. Hartl. Genetic properties influencing the evolvability of gene expression. Science 317: 118-121. 2007.
Li, W. H. Molecular evolution. Sinauer Associated, Inc., Sunderland Massachusettes. 1997.
Mager, W. H., and A. J. De Kruijff. Stress-induced transcriptional activation. Microbiol Rev 59:506-531. 1995.
Martinez-Pastor, M. T., G. Marchler, C. Schüller, A. Marchler-Bauer, H. Ruis, and F. Estruch. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15: 2227-2235. 1996.
Mortimer, R. K., P. Romano, G. Suzzi, and M. Polsinelli. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10: 1543-1552. 1994.
Moye-Rowley, W. S. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell 2: 381-389. 2003.
O'Rourke, S. M., I. Herskowitz, and E. K. O'Shea. Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18: 405-412. 2002.
Purugganan, M. D. The molecular population genetics of regulatory genes. Mol Ecol 9: 1451-1461. 2000.
Raitt, D. C., A. L. Johnson, A. M. Erkine, K. Makino, B. Morgan, D. S. Gross, and L. H. Johnston. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11:2335-2347. 2000.
Rockman, M. V. and G. A. Wray. Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol 19: 1991-2004. 2002.
Ruis, H. and C. Schüller. Stress signaling in yeast. Bioessays 17: 959-965. 1995.
Schadt, E. E., S. A. Monks, T. A. Drake, A. J. Lusis, N. Che, V. Colinayo, T. G. Ruff, S. B. Milligan, J. R. Lamb, G. Cavet et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297-302. 2003.
Schmitt, A. P. and K. McEntee. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93: 5777-5782. 1996.
Sorger, P. K. Heat shock factor and the heat shock response. Cell 65: 363-366. 1991.
Stern, D. L. Evolutionary developmental biology and the problem of variation. Evolution 54: 1079-1091. 2000.
Sung, H. M., T. Y. Wang, D. Wang, Y. S. Huang, J. P. Wu, H. K. Tsai, J. Tzeng, C. J. Huang, Y. C. Lee, P. Yang, J. Hsu, T. Chang, C. Y. Cho, L. C. Weng, T. C. Lee, T. H. Chang, W. H. Li, and M. C. Shih. Roles of trans and cis variation in yeast intraspecies evolution of gene expression. Mol Biol Evol 26:2533-2538. 2009.
Tautz, D. Evolution of transcriptional regulation. Curr Opin Genet Dev 10: 575-579. 2000.
Tirosh, I., S. Reikhav, A. A. Levy, and N. Barkai. A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324:659-662. 2009.
Tirosh, I., A. Weinberger, M. Carmi, and N. Barkai. A genetic signature of interspecies variations in gene expression. Nat Genet 38: 830-834. 2006.
Treger, J. M., T. R. Magee, and K. McEntee. Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. Biochem Biophys Res Commun 243: 13-19. 1998.
Trott, A. and K. A. Morano. The yeast response to heat shock. In Yeast stress responses (eds. S. Hohmann and W.H. Mager), pp. 71-119. Springer, Heidelberg, Germany. 2003.
Tsai, H. K., M. Y. Chou, C. H. Shih, G. T. Huang, T. H. Chang, and W. H. Li. MYBS: a comprehensive web server for mining transcription factor binding sites in yeast. Nucleic Acids Res 35: W221-226. 2007.
Wang, D., H. M. Sung, T. Y. Wang, C. J. Huang, P. Yang, T. Chang, Y. C. Wang, D. L. Tseng, J. P. Wu, T. C. Lee, M. C. Shih, and W. H. Li. Expression evolution in yeast genes of single-input modules is mainly due to changes in trans-acting factors. Genome Res 17:1161-1169. 2007.
Westerheide, S. D. and R. I. Morimoto. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280: 33097-33100. 2005.
Wieser, R., G. Adam, A. Wagner, C. Schüller, G. Marchler, H. Ruis, Z. Krawiec, and T. Bilinski. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem 266: 12406-12411. 1991.
Wittkopp, P. J., B. K. Haerum, and A. G. Clark. Evolutionary changes in cis and trans gene regulation. Nature 430: 85-88. 2004.
Wray, G. A., M. W. Hahn, E. Abouheif, J. P. Balhoff, M. Pizer, M. V. Rockman, and L. A. Romano. The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20: 1377-1419. 2003.
Wu, W. S. and W. H. Li. Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics 9: 439. 2008.
Yamamoto, A., Y. Mizukami, and H. Sakurai. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280: 11911-11919. 2005.
Yamamoto, A., J. Ueda, N. Yamamoto, N. Hashikawa, and H. Sakurai. Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot Cell 6: 1373-1379. 2007.
Young, J. C., V. R. Agashe, K. Siegers, and F. U. Hartl. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5: 781-791. 2004.
Yvert, G., R. B. Brem, J. Whittle, J. M. Akey, E. Foss, E. N. Smith, R. Mackelprang, and L. Kruglyak. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35: 57-64. 2003.