簡易檢索 / 詳目顯示

研究生: 洪健君
Hung, Chien-Chun
論文名稱: 包埋微帶天線於複合層板內之電磁模式分析
Development of an Electromagnetic Model for Microstrip Antennas Embedded in Composite Laminates
指導教授: 楊世銘
Yang, Shih-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 117
中文關鍵詞: 微帶天線複合層板異向性
外文關鍵詞: microstrip antenna, anisotropic, composite laminate
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   一般飛機通訊所用之天線多半暴露在機體外側,其容易導致空氣動力流場產生紊流。本文提出一種將微帶天線包埋入複合層板之創新天線模組,可用以減少前述缺點。由於複合層板包覆前述天線模組所造成之異向性效應,將於本文中討論與驗證。本文係利用赫茲向量位能(Hertzian vector potentials)推導出頻域之電磁波方程式,進而得到微帶天線之阻導矩陣。再藉由巴塞維定理(Parseval’s theorem)及伽遼金法(Galerkin’s method)對於在頻域之阻導函數進行運算,以求得在給定操作頻率下之天線大小。複合層板係由不同角度之各疊層堆疊而成,使得整體複合層板成為電磁異向性。所以本文進一步提出包埋微帶天線於複合層板內之電磁模式探討,藉以對於電磁波在異向性複合層板內傳播特性進行分析,並計算出微帶天線輻射所造成之電磁場型。
      等向性基板之微帶天線可以藉由半經驗公式或Ansoft Ensemble®等軟體進行設計與分析,在非等向性基板之微帶天線則必須利用異向性之電磁模式方可進行設計與分析。分析結果顯示在非等向性基板之微帶天線特性受到各主軸之介電常數比以及疊層角度影響甚鉅,在非等向性基板之微帶天線所造成在遠場之電場最大值,並非如同等向性基板之微帶天線一樣發生在垂直微帶天線方向上,而是與其疊層角度和介電常數異向比有關。由分析結果顯示,包埋在電磁異向性複合層板內之微帶天線設計與堆疊方式有關,而且其影響會隨著層板厚度增加而更為明顯。分析結果亦發現,利用疊層角度 的非等向性基板設計,能夠使得微帶天線在特定方向具有相當好的指向性,而且較厚的基板更能加強微帶天線在非等向性複合層板上輻射電場之指向性。藉由種種分析結果顯示,都能夠驗證前述包埋於複合層板內之微帶天線模組在航太通訊應用上確有其應用價值。

      Conventional onboard antennas mounted on aircraft fuselage often lead to disturbances in aerodynamic field. This dissertation proposes an innovative antenna module where the microstrip antennas are embedded in composite laminates. The effects of antenna covered with a dielectric layer are examined in this dissertation. Furthermore, the effects of the anisotropic permittivities of composite substrates are also studied. A set of homogeneous electromagnetic wave equations in spectral domain is developed by using the Hertzian vector potentials to obtain the immittance matrix of the antennas. The dimensions of radiators at desired operating frequency are solved by the spectral domain immittance functions with Parseval’s theorem and Galerkin’s method.
      Design and analysis of rectangular patch on an isotropic substrate can be accomplished by using semiempirical equations or the integral equation with numerical technique such as the MoM (method of moment) analysis in commercial software Ansoft Ensemble®. However, the electromagnetic model of microstrip antennas on anisotropic substrates is not available as yet. Analyses show that the electromagnetic properties of microstrip antennas are significantly influenced by the substrate properties. For rectangular microstrip antenna on isotropic substrates, the electromagnetic performance is analyzed in space domain by using the Maxwell equation. Numerical calculations show that the dimension of a corner-truncates patch operating at 2.40 GHz can be determined effectively, and the design is validated by experiments. For microstrip antenna on anisotropic substrates, the electromagnetic performance is formulated in spectral domain. Analyses show that the electromagnetic properties are dependent upon the ratio of dielectric constants along the principal axes and the angle of fiber orientation on the substrate. The anisotropic ratio, defined by the square root of the relative permittivity ratio between the optical axis and the perpendicular axis direction, is employed to study the effects of substrate properties on antenna performance. Analyses show that the dimension of microstrip antenna will vary according to distinct ply angles and the variance will be more noticable as the substrate thickness increases. In additional, there are large variations in the range of anisotropic ratio less than one because the permittivities perpendicular to the optical axis dominate the electromagnetic wave propagation. The far field patterns of microstrip antennas in anisotropic composite laminates show that the maxima of E-field patterns will not always locate on the direction perpendicular to microstrip patches, i.e., the elevation angle , and they are dependent on the ply angles and anisotropic ratios. Careful design of anisotropic ratio and ply angle will give good directivity, and thicker substrate gives much better directivities. The results show that the composite laminated plate embedded with microstrip antennas is a good candidate in aerospace communication applications.

    ABSTRACT i CONTENTS iii LIST OF TABLES v LIST OF FIGURE vi NOMENCLATURE x ACRONYM xiii CHAPTER I INTRODUCTION 1 1.1 Motivation and Objective 1 1.2 Literature Review 2 1.3 Outline 5 II MICROSTRIP ANTENNAS 7 2.1 Introduction 7 2.2 Microstrip Antenna on Isotropic Substrates 7 2.3 Design of Microstrip Antenna on Isotropic Substrates 12 2.4 Summary 13 III FORMULATION OF ELECTROMAGNETIC WAVE ON ANISOTROPIC SUBATRATES 19 3.1 Introduction 19 3.2 Electromagnetic Wave Equations in Space Domain 19 3.2.1 Maxwell’s equations in phasor form 19 3.2.2 Wave equation in terms of magnetic potential 22 3.2.3 Electromagnetic boundary conditions 23 3.3 Electromagnetic Wave Equations in Spectral Domain 26 3.3.1 Electric and magnetic Hertzian potentials 26 3.3.2 Electromagnetic fields on a uniaxial medium 29 3.3.3 Wave equations on an anisotropic medium 33 3.4 Summary 36 IV DESIGN AND ANALYSIS OF MICROSTRIP ANTENNAS ON ANISOTROPIC SUBSTRATES 40 4.1 Introduction 40 4.2 An Electromagnetic Model on Anisotropic Substrates 40 4.3 Solution Technique of Microstrip Antennas on Anisotropic Substrates 42 4.4 Simulation of Electromagnetic Wave Propagation on Anisotropic Substrates 47 4.5 Conclusion 50 V DESIGN AND ANALYSIS OF MICROSTRIP ANTENNAS IN COMPOSITE LAMINATES 62 5.1 Introduction 62 5.2 An Electromagnetic Model in Composite Laminates 62 5.3 Simulation of Electromagnetic Wave Propagation in Composite Laminates 68 5.4 Conclusion 77 VI SUMMARY AND CONCLUSIONS 109 REFERENCES 112 PUBLICATION LIST 116 VITA 117

    Ansoft Ensemble®, “Getting Started: A Cavity Backed, Slot-Coupled, CP Patch Antenna Problem, ” Ansoft Corporation, Mar 1999.
    Albuquerque, M. R. M. L., d'Assuncao, A. G. and da Silva, S. G., “Broadband Microstrip Patch Antennas on Anisotropic Substrates,” Proc. IEE Eleventh Int. Conf. on Antennas and Propagation, ICAP, vol. 1, pp. 49-52, Apr 2001.
    Alexopoulos, N. G., “Characteristics of Microstrip Directional Couplers on Anisotropic Substrates,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-30, pp. 1267-1270, Aug 1982.
    Alexopoulos, N. G., “Integrated-circuit Structures on Anisotropic Substrates,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 847-881, Oct 1985.
    Bahl, I. J. and Stuchly, S. S., “Analysis of a Microstrip Covered with a Lossy Dielectric,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-28, no. 2, pp. 104-109, Feb 1980.
    Bahl, I. J., Bhartia, P. and Stuchly, S. S., “Design of Microstrip Antennas Covered with a Dielectric Layer,” IEEE Trans. Antennas and Propagation, vol. AP-30, no. 2, pp. 314-318, Mar 1982.
    Balanis, C. A., Antenna Theory, 2nd Ed., John Wiley & Sons, pp. 66-69, pp. 722-736, pp. 767-772, 1997.
    Carver, K. R. and Mink, J. M., “Microstrip Antenna Technology,” IEEE Trans. Antennas and Propagation, vol. AP-29, no. 1, pp. 2-24, Jan 1981.
    Collin, R. E. and Zucker, F. J., Antenna Theory, vol. 2, Mc-Graw Hill, pp. 61-74, 1969.
    Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, pp. 32-34, pp. 206-207, 1991.
    Crawley, E. F. and deLuis, J., “Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, vol. 25, no. 10, pp. 1373-1385, 1987.
    d'Assuncao, A. G., Dantas, E. J. A., “On the Resonant Frequency of Magnetized Rectangular Microstrip Patch Rresonators,” IEEE Antennas and Propagation Society International Symposium, AP-S Digest, vol. 3, pp. 1508-1511, Jun 1993.
    Deschamps, G. A., “Microstrip Microwave Antennas,” presented at the USAF Symposium on Antennas, 1953.
    Gibson, R. F., Principles of Composite Material Mechanics, Mc-Graw Hill, pp. 48-58, pp. 201-207, pp. 249-258, 1994.
    Gutton, H. and Baissinot G., “Flat Aerial for Ultra High Frequency,” French Patent No. 703 113, 1955.
    Itoh, T. and Mittra, R., “A Technique for Computing Dispersion Characteristics of Shield Microstrip Lines,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-22, no. 10, pp. 896-898, Oct 1974.
    Itoh, T., “Analysis of Microstrip Resonators,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-22, no. 11, pp. 946-952, Nov 1974.
    Itoh, T., “Spectral Domain Immitance Approach for Dispersion Characteristics of Generalized Printed Transmission Lines,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-28, no. 7, pp. 733-736, Jul 1980.
    Itoh, T. and Menzel, W., “A Full-Wave Analysis Method for Open Microstrip Structures,” IEEE Trans. Antennas and Propagation, vol. 29, no. 1, pp. 63-67, Jan 1981.
    Jansen, R. H., “The Spectral-Domain Approach for Microwave Integrated Circuits,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-33, no. 10, pp. 1043-1056, Oct 1985.
    Lee, H. and Tripathi, V. K., “Spectral Domain Analysis of Frequency Dependent Propagation Characteristics of Planar Structures on Uniaxial Medium,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-30, no. 8, pp. 1188-1193, Aug 1982.
    Lin, S.-Y. and Chuang, H-.R., “Design of 2.4 GHz LNA/PA/Circularly-Polarized Active Microstrip Antennas,” Microwave Journal, vol.42, no.1, pp. 22-37, Jan. 1999.
    Nelson, R. M., Rogers, D. A. and d'Assuncao, A. G., “Resonant Frequency of a Rectangular Microstrip Patch on Several Uniaxial Substrates,” IEEE Trans. Antennas and Propagation, vol. 38, no. 7, pp. 973-981, Jul 1990.
    Oliveira, J. R. S., d'Assuncao, A. G. and Rocha, C. S., “Characteristics of a Suspended Rectangular Microstrip Patch Antenna on a Uniaxial Substrate,” Proc. IEE Ninth Int. Conf. on Antennas and Propagation, ICAP, vol. 1, pp. 37-40, Apr 1995.
    Oliveira, J. R. S. and d'Assuncao, A. G., “Input Impedance of Microstrip Patch Antennas on Anisotropic Dielectric Substrates,” IEEE Antennas and Propagation Society International Symposium, AP-S Digest, vol. 2, pp. 1066-1069, Jul 1996.
    Owens, R. P., Aitken, J. E., and Edwards, T. C., “Quasi-static Characteristics of Microstrip on an Ansiotropic Sapphire Substrate,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-24, no. 8, pp. 499-505, Aug 1976.
    Pozar, D. M., “Radiation and Scattering from a Microstrip Patch on a Uniaxial Substrate,” IEEE Trans. Antennas and Propagation, vol. AP-35, no. 6, pp. 613-621, Jun 1987.
    Pozar, D. M., “Microstrip Antennas,” Proc. IEEE, vol. 80, no. 1, pp. 79-81, Jan. 1992.
    Shavit, R., “Dielectric Cover Effect on Rectangular Microstrip Antenna Array,” IEEE Trans. Antennas and Propagation, vol. 42, no. 8, pp. 1180-1184, Aug 1994.
    Spiegel, M. R., Mathematical Handbook, 2nd Ed., McGraw-Hill, p. 175, 1990.
    Wang, T. H., Itoh, T. and Ling, H., “Spectral Domain Analysis of Coupled Slot Antenna,” IEEE Trans. Antennas and Propagation, vol. 36, no. 1, pp. 1620-1624, Nov 1988.
    Wong, K. -L., Row, J. -S., Kuo, C. -W. and Huang, K. -C., “Resonance of a Rectangular Microstrip Patch on a Uniaxial Substrate,” IEEE Trans. Microwave Theory and Techniques, vol. 41, no. 4, pp. 698-701, Apr 1993.
    Yang, S. M. and Bian, J. J., 1996, “Vibration Suppression Experiment of Composite Laminated Plates by Embedded Piezoelectric Sensor and Actuator,” Smart Mater. Struct., vol. 5, pp. 501-507.
    Yang, S. M., Hung, C. C., and Chen, K. H., “Design and Fabrication of a Smart Layer Module in Composite Laminated Structures,” Mar. 2004 (Submitted).
    Zhong, S. -S., Liu, G. and Qasim, G., “Closed Form Expressions for Resonant Frequency of Rectangular Patch Antennas with Multidielectric Layers,” IEEE Trans. Antennas and Propagation, vol. 42, no. 9, pp. 1360-1363, Sep 1994.

    下載圖示 校內:2005-06-23公開
    校外:2005-06-23公開
    QR CODE