簡易檢索 / 詳目顯示

研究生: 尹瑞豐
Yin, Jui-Feng
論文名稱: 非線性輸入修正法之研究與其在機電系統減振上之應用
Development of Nonlinear Input Shaping Methods and It's Application on Residual Vibration Suppression of Electro-mechanical Systems
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 181
中文關鍵詞: 輸入修正回授控制電磁非線性殘留振動Duffing非線性
外文關鍵詞: Feedback Control, Electromagnetic Actuated Systems, Duffing Nonlinear Systems, Residual Vibration, Input Shaping
相關次數: 點閱:93下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   殘留振動的存在,影響了撓性機件運動之精密定位,增加了達成工作目標所需要的時間;而輸入修正法,提供了一個有效且快速的減振方法。傳統的輸入修正法,大多應用於單自由度或低自由度之線性結構系統;而於本文中,我們進一步拓展了輸入修正法的應用,包括:結構系統之自由度、系統動態之線性度以及與其他系統之整合性。於結構系統之自由度的拓展方面,我們以實驗驗證與FEM模擬分析,證實了線性輸入修正法(ZV與ZVD shapers)皆能有效地抑制線性連續系統之殘留振動;其中ZVD shaper對系統參數不確定性具有較佳的強健性。同時亦發現FEM模擬分析與實驗結果具有不錯的相關性,未來可以直接採用FEM模擬分析的方式,設計並測試新的輸入修正波形。在系統動態之線性度的拓展方面,我們於相空間下,分別以機械能守恆與力平衡的觀點來分析非線性系統,發展了非線性輸入修正法:二步與三步輸入;藉由模擬分析與實驗驗證得知,非線性輸入修正能有效抑制具Duffing非線性與電磁力非線性之系統的殘留振動,其中三步輸入具有較佳的強健性;對於二步輸入之強健性較不足,我們採用線上調整方法,來改善其性能表現,提供了我們更實用的方式。而於系統之非線性效應可忽略下,二步輸入與三步輸入之強健性表現將個別趨近於ZV shaper與ZVD shaper,可知所發展之非線性輸入修正方法,兼具了線性與非線性輸入修正之設計。於與其他系統之整合性的拓展,我們將非線性輸入修正結合控制系統,模擬結果顯示輸入修正有效地縮短安定時間;而控制器的加入,有助於抵抗雜訊干擾,改善穩態誤差,因而增加了強健性,達到精密定位的目的。

      Input shaping is an effective method for suppressing the vibration of structures where passive damping cannot be incorporated. However, although the traditional linear input shaping techniques, such as zero vibration (ZV) and zero vibration and derivative (ZVD), which utilize destructive interference, work well for discrete systems, the effectiveness of those linear shapers is not clear for continuous structural systems. In addition, for strongly nonlinear system, the principle of superposition, the fundamental design basis of linear shapers, is no longer applicable and a new design methodology for input shapers should be explored. In this thesis, the above two issues are discussed and a new methodology for designing nonlinear shapers for suppressing vibration of nonlinear dynamical systems is also proposed and developed. For continuous systems, the governing equation of a cantilever beam is derived. Mathematical expressions of characterizing the performances of existing discrete type ZV and ZVD shapers can also be derived from this continuous formulation. Meanwhile, a piezoelectric driven steel beam experiment is designed to examine the effectiveness of both shapers. In parallel, a finite element dynamics model is also constructed to simulate the behavior of the beam subjected to the shaped input for future shaper design for complicated continuous structures. The experimental and computer simulation results agree with each other to a large extent, and indicate that when properly designed, both ZV and ZVD shaper could effectively reduce the residual vibration of flexural structures. For nonlinear systems, a general input shaper design methodology for single-degree-of-freedom systems with both Duffing spring and electromagnetic forcing nonlinearities is successfully devised using an energy approach. Following this approach, two-step and three-step shapers are developed, which in the linear limit reduce to the traditional ZV and ZVD shapers respectively. The robustness of these nonlinear shapers is investigated numerically through several case studies. Meanwhile, an electromagnetically driven Duffing mechanical system is also constructed so that the performances of the nonlinear shapers in vibration suppression can be examined. It is shown that the nonlinear shapers result in a significant improvement in residual vibration suppression and settling time reduction in comparison with the traditional linearlized ZV and ZVD shapers. Finally, in order to withstand the steady state disturbance, the incorporation of nonlinear shaper with feedback control is investigated and the computer simulation results indicate that this approach should be able to achieve a shorter settling time than using pure feedback control and a better steady state disturbance rejection than using pure command shaping techniques.

    第一章 緒論 1.1 介紹…………………………………………………………………1 1.2 研究動機及目的……………………………………………………6 1.3 本文架構……………………………………………………………7 第二章 背景介紹 2.1 輸入修正法介紹……………………………………………………9 2.1.1 輸入修正法之數學理論……………………………………………9 2.1.2 線性輸入修正法……………………………………………………12 2.2 製輸入修正法之相關應用…………………………………………14 2.2.1 單獨使用輸入修正…………………………………………………15 2.2.2 輸入修正法結合控制系統…………………………………………18 2.3 非線性輸入修正法…………………………………………………21 第三章 線性輸入修正法應用於線性連續結構之減振 3.1 實驗系統架設與其系統動態模型建立……………………………25 3.2 實驗結果與模擬分析………………………………………………29 3.2.1 步階輸入之實驗結果………………………………………………30 3.2.2 步階輸入之有限元素模擬分析……………………………………31 3.2.3 實驗結果與理論分析比較…………………………………………33 3.3 正弦輸入……………………………………………………………35 3.3.1 正弦輸入之性能表現………………………………………………35 3.3.2 正弦輸入之位移補償………………………………………………38 3.4 討論…………………………………………………………………39 3.5 結論…………………………………………………………………41 第四章 非線性輸入修正法 4.1 能量分析方法………………………………………………………43 4.1.1 二步輸入法…………………………………………………………44 4.1.2 三步輸入法…………………………………………………………48 4.2 應用於純立方彈簧結構之減振模擬分析…………………………52 4.2.1 減振效果比較………………………………………………………53 4.2.2 對系統參數不確定之強健性研究…………………………………54 4.3 應用於Duffing非線性結構系統之減振模擬分析 ………………57 4.3.1 減振效果比較………………………………………………………57 4.3.2 對系統參數不確定之強健性研究…………………………………57 4.4 討論…………………………………………………………………59 4.4.1 線上調整方法流程…………………………………………………59 4.4.2 範例研究……………………………………………………………61 4.5 結論…………………………………………………………………62 第五章 非線性輸入修正法應用於電磁驅動之Duffing系統之減振 5.1 非線性輸入之參數設計……………………………………………63 5.1.1 參數之正規化與其不確定性………………………………………64 5.1.2 Pull-In不穩定現象 ………………………………………………65 5.1.3 二步輸入法…………………………………………………………66 5.1.4 三步輸入法…………………………………………………………69 5.2 輸入修正法對參數不確定之強健性研究…………………………72 5.2.1 純線性彈簧結構……………………………………………………72 5.2.2 純立方彈簧結構……………………………………………………79 5.3 結論…………………………………………………………………83 第六章 模擬分析與實驗驗證 6.1 實驗系統建立………………………………………………………85 6.1.1 實驗流程……………………………………………………………86 6.1.2 雙鉗樑設計…………………………………………………………88 6.1.3 電磁致動器與Target設計…………………………………………89 6.1.4 電壓轉電流放大器設計……………………………………………92 6.2 系統模擬模型建立…………………………………………………95 6.2.1 雙鉗樑系統之彈簧常數量測………………………………………96 6.2.2 雙鉗樑系統之等效阻尼與等效質量………………………………98 6.2.3 等效系統模型………………………………………………………101 6.3 模擬分析與實驗結果比較…………………………………………105 6.3.1 步階輸入分析………………………………………………………106 6.3.2 非線性輸入法對系統參數不確定之強健性研究…………………118 6.3.3 方波軌跡追蹤………………………………………………………123 6.4 結論…………………………………………………………………126 第七章 非線性輸入修正法結合回授控制器之減振設計 7.1 介紹…………………………………………………………………127 7.2 回饋線性化設計線性化控制器……………………………………130 7.2.1 回饋線性化…………………………………………………………131 7.2.2 PID控制器設計 ……………………………………………………133 7.3 操作點線性化之控制器設計………………………………………141 7.4 非線性輸入修正法結合PID控制器 ………………………………145 7.5 結論…………………………………………………………………153 第八章 各輸入修正方法之強健性討論 8.1 輸入修正結合PID控制對系統參數不確定性之強健性研究 ……155 8.2 各輸入修正法之強健性比較………………………………………163 8.3 結論…………………………………………………………………165 第九章 結論及未來工作 9.1 總結…………………………………………………………………167 9.2 結論…………………………………………………………………169 9.3 本研究潛在的應用…………………………………………………171 9.4 論文貢獻……………………………………………………………173 9.5 未來工作……………………………………………………………174 參考文獻………………………………………………………………………175

    [1] S. Jones and A. G. Ulsoy, “An Approach to Control Input Shaping with Application to Coordinate Measuring Machines,” ASME J. of Dynamics, Measurement, and Control, Vol. 121, pp. 242-247, 1999.
    [2] A. Preumont, Vibration Control of Active Structures, An Introduction, Kluwer Academic Publication, 1997.
    [3] W. Singhose, K. Bohlke, and W. Seering, Fuel-Efficient Pulse Command Profiles for Flexible Spacecraft, AIAA J. of Guidance, Control, and Dyn., Vol. 19(4), pp. 954-960, 1996.
    [4] T. Singh and S. R. Vadali, “Input-Shaped Control of Three-Dimensional Maneuvers of Flexible Spacecraft,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 16, pp. 1061-1068, 1996.
    [5] B. Fardanesh and J. Rastegar, “A New Model-Based Tracking Controller for Robot Manipulators Using Trajectory Pattern Inverse Dynamics,” IEEE Transations on Robotics and Automation, Vol. 8(2), pp. 279-285, 1992.
    [6] J. D. Lee, “Optimal Control of a Flexible Parallel Link Robotic Manipulator,” Computers and Structures, Vol. 48(3), pp. 375-385, 1993.
    [7] S. F. P Saramago and V. Steffen, “Optimization of the Trajectory Planning of Robot Manipulators Taking into Account the Dynamics of the System,” Mechanism and Machine Theory, Vol. 33(7), pp. 883-894, 1996.
    [8] C. F. Cutforth and L. Y. Pao, “Control Using Equal Length Shaped Commands to Reduce Vibration,” IEEE Transations on Control Systems Technology, Vol. 11(1), pp. 62-72, 2003.
    [9] W. E. Singhose and N. C. Singer, “Effects of Input Shaping on Two-Dimensional Trajectory Following,” IEEE Transations on Robotics and Automation, Vol. 12(6), pp. 881-887, December 1996.
    [10] D. Gorinevsky and G. Vukovich, “Nonlinear Input Shaping Control of Flexible Spacecraft Reorientation Maneuver,” Proceedings of the IEEE International Conference on Control Applications Dearborn, MI, pp. 15-18, September 1996.
    [11] D. Economou, C. Mavroidis, I. Antoniadis, C. Lee, “Maximally Robust Input Preconditioning for Residual Vibration Suppression Using Low-Pass FIR Digital Filters,” ASME J. Dynamic Systems, Measurement,and Control, Vol. 124, pp. 85-97, March 2002.
    [12] E. R. Marsh and A.H. Slocum, “An Integrated Approach to Structural Damping,” Precision Engineering, Vol. 18, pp. 103-109, 1996.
    [13] C-K Lee, W-W Chiang, and T. O’Sullivan, “Piezoelectric Modal Sensors and Actuators Achieving Critical Damping on a Cantilever Plate,” AIAA SDM Conf., AIAA Paper 89-1390-CP, 1989.
    [14] M. E. Campbell and E. F. Crawley, "Asymptotic Linear Quadratic Control for Lightly Damped Structures," AIAA Journal of Guidance, Control, and Dynamics, Vol. 19, pp. 969-971, 1996.
    [15] O. J. M. Smith, “Posicast Control of Damped Oscillatory Systems,” Proc. Of the IRE, pp. 1249-1255, 1957.
    [16] L. Y. Pao and M. A. Lau. "Robust Input Shaper Control Design for Parameter Variations in Flexible Structures," ASME J. Dynamic Systems, Measurement, and Control, Vol. 122, pp. 63-70, 2000.
    [17] D. K. Miu, Mechatronics, Eelctromechanics and Contromechanics, Springer, New York, 1992.
    [18] T. Tuttle, Creating Time-Optimal Commands for Linear Systems, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1997.
    [19] W. E. Singhose, Command Generation for Flexible Systems, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1997.
    [20] N. C. Singer and W. P. Seering, ”Preshaping Commond Inputs to Reduse System Vibration,” J. of Dynamic Systems, Measurement, and Control, pp. 76-82, 1990.
    [21] T.-S. Yang and W.-L. Liang, “Suppression of Nonlinear Forced Waves by Input Shaping.” Wave Motion, Vol. 37, pp. 101-117, 2003.
    [22] T. C. Lin, “Design an Input Shaper to Reduce Operation-Induced Vibration,” American Control Conf., pp. 2502-2506, San Francisco, CA, 1993.
    [23] N. C. Singer and W. P. Seering, “Design and Comparison of Command Shaping Methods for Controlling Residual Vibration,” Proceedings of the IEEE International Conference on Robotics and Automation., pp. 888-893, Scottsdale, AZ, 1989.
    [24] T. D. Tuttle and W. P. Seering, “Vibration Reduction in 0-g Using Input Shaping on the MIT Middeck Active Control Experiment,” American Control Conf., pp. 919-923, Seattle, WA, 1995.
    [25] T. D. Tuttle and W. P. Seering, “A Zero-Placement Technique for Designing Shaped Inputs to Suppress Multiple-mode Vibration,” American Control Conf., pp. 2533-2537 Baltimore, MD, 1994.
    [26] W.E. Singhose, L.J. Porter, and W.P. Seering, “Input Shaped Control of a Planar Gantry Crane with Hoisting,” American Control Conf. Albuquerque, NM, 1997.
    [27] E. Crawley, M. Campbell, and S. Hall, High Performance Structures: Dynamics and Control, Cambridge University Press, 1999.
    [28] N. Hagood IV, D. Roberts, L. Saggere, K. Breuer, K-S Chen, J. Carretero, H. Li, R. Mlcak, S. Pulitzer, M. Schmidt, S. Spearing, and Y. H. Su, “Micro Hydraulic Transducer Technology for Actuation and Power Generation,” in the SPIE 7th Annual International Symposium on Smart Structure and Materials Conference, 2000.
    [29] M. E. Campbell, J. P. How, S. Grocott, and D. W. Miller "On-orbit Closed-loop Control Results for MACE" AIAA J. Guidence, Control, and Dynamics (to be published).
    [30] E. Prechtel and S. R. Hall, “ Design of a High Efficiency, Large Stroke, Electromechanical Actuator,” Smart Materials and Structures, Vol. 8, pp. 13-30, 1999.
    [31] E. Crawley and J. de Luis, “Use of Piezoelectric Actuators as Element of Intelligent Structures,” AIAA Journal, Vol. 25, pp. 1373-1385, 1987.
    [32] T. Singh and G.R. Heppler, “Shaped Input Control of a System With Multiple Modes,” ASME Journal of Dynamic Systems, Measurement, and Control, pp. 341-437, September 1993.
    [33] P. Van Kessel, L. Hornbeck, R. Meier, M. Douglass, A MEMS-Based Projection Display, Proc. IEEE, Vol. 86, no. 8, pp. 1687-1704, 1998.
    [34] C. La-orpacharapan and L. Y. Pao. “Control of Flexible Structures with a Projected Phase-Plane Approach,” Proc. Amer. Ctrl. Conf., Arlington, VA, June 2001.
    [35] C. La-orpacharapan and L. Y. Pao. “Shaped Phase-Plane Control for Flexible Structures with Friction,” Proc. Amer. Ctrl. Conf., Anchorage, AK, May 2002.
    [36] C. La-orpacharapan and L. Y. Pao. “Shaped Control for Damped Flexible Structures with Friction and Slew Rate Limits,” Proc. IEEE Conf. Decision and Ctrl., Las Vegas, NV, Dec. 2002.
    [37] C. La-orpacharapan and L. Y. Pao. “Fast Seek Control for Flexible Disk Drive Systems with Back EMF and Inductance,” Proc. Amer. Ctrl. Conf., Denver, CO, June 2003.
    [38] S. Jordan. “Eliminating Vibration in the Nano-World,” http://www.pi.ws/
    [39] W. Singhose, W. Seering, and N. Singer, “Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs,” J. of Mechanical Design, pp. 654-659, June 1994.
    [40] W. Singhose, W. Seering, and N. Singer, “Input Shaping for Vibration Reduction with Specified Insensitivity to Modeling Errors,” In Japan-USA Sys. On Flexible Automation, 1996
    [41] J. Park and P.-H. Chang, “Learing Input Shaping Technique for Non-LTI Systems,” J. of Dynamic Systems, Measurement, and Control, Vol. 123, pp. 288-293, June 2001.
    [42] A. Tzes and S. Yurkovich, “An Adaptive Input Shaping Control Scheme for Vibration Suppression in Slewing Flexible Structures,” IEEE Transations on Control Systems Technology, Vol. 1, pp. 114-121, June 1993.
    [43] R. Kinceler and P.H. Meckl, “Input Shaping for Nonlinear System,” In Proceedings of the American Control Conf., pp. 914-918, Seattle, WA, 1995.
    [44] D. Gorinevsky and G. Vukovich, “Nonlinear Input Shaping Control of Flexible Spacecraft Reorientation Maneuver,” J. of Guidance, Control, and Dynamics, Vol. 21(2), pp. 264-270, 1998.
    [45] L.-W. Tsai, “Solving the Inverse Dynamics of Parallel Manipulators by the Principle of Virtual Work,” In 1998 ASME Desian Engineering Technical Conf, number DETC/MECH-5865, Sept 1998.
    [46] C.-Y. Wang, W. K. Timoszyk, and J. E. Borow, “Payload Maximization for Open Chained Manipulators Finding Weightlifting Motions for Puma 762 Robot,” IEEE Transations on Robotics and Automation, Vol. 17(2), pp. 218-244, April 2001.
    [47] Smith, J. K. Kozak, and W. Singhose, “Input Shaping for a Simple Non-Linear Syetem,” American Control Conf., Anchorage, AK, 2002.
    [48] J. K. Kozak, “Robust Command Generation for Nonlinear Systems,” Ph.D., Georgia Tech., 2003.
    [49] 李佳昌,利用輸入修正手段抑制因連續系統運動而引起之殘餘振動之理論研究,國立成功大學機械系碩士論文,2004。
    [50] ABAQUS Standard User’s Manual V. 5.8, HKS Corp., 2001.
    [51] S. D. Senturia, Microsystem Design, Kluwer Academic Publication, 2000.
    [52] T. R. Akylas and T.-S. Yang, “On Short-scale Oscillatory Tails of Long-wave Disturbances.” Stud. Appl. Maths, Vol. 94, pp. 1-20, 1995.
    [53] S.-P. Su and T.-S. Yang, “Suppression of Nonlinear Forced Waves by Error-Insensitive Input Shaping,” J. Chinese Society of Mechanical Engineers, Vol. 23, No. 6, pp. 507-516, 2002..
    [54] A. Nayfeh and D. Mook, Nonlinear Oscillation, Wiley, 1979.
    [55] T.-S. Yang, K.-S. Chen and J.-F. Yin, “Design of Input Shapers for Duffing Nonlinear System” Submitted to AIAA J. (2003)
    [56] Y. Nemirovsky and O. Bochobza-Degani, “A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators,” IEEE J. Microelectromechanical Systems, Vol. 10, pp. 601-615, 2001.
    [57] K.-S. Chen, D. L. Trumper, and S. T. Smith, “Design and Control of an X-Y-θ Stage,” Precision Engineering, Vol. 26, pp. 355-369, 2002.
    [58] D. L. Trumper, Sean M. Olson, and P. K. Subrahmanyan, “Linearizing Control of Magnetic Suspension System,” IEEE, Transactions on Control Systems Technology, Vol. 5, No. 4, pp. 427-438, July, 1997
    [59] S. Mittal and C.-H. Menq, “Precision Motion Control of a Magnetic Suspension Actuator Using a Robust Nonlinear Compensation Schem,” IEEE/ASME, Transactions on Mechatronics, Vol. 2, No. 4, pp. 268-280, Dec. 1997.
    [60] 何正中,等效微機電靜電致動器之控制器設計與實驗驗證,國立成功大學機械系碩士論文,2002。
    [61] K.-S. Chen, A Spring-Dominated Regime Design of a High Load Capacity, Electromagnetcially Driven X-Y-θ Stage, Master Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, June, 1995.
    [62] S. M. Olson, Nonlinear Conpensation of a Single Degree of Freedom Magnetic Suspension System, Master and Bachelor Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, May, 1994.
    [63] T.-J. Yeh, Y.-J. Chung, and W.-C. Wu, “Sliding Control of Magnetic Bearing System,” ASME, Journal of Dynamic System, Measurement, and Control, Vol. 123, pp. 1-10, Sep., 2001.
    [64] J. J. Slotine and W.-P. Li, “Applied Nonlinear Control,” Prentice-Hall, 1991.
    [65] H. H. Woodson and J. R. Melcher, “Electromachinical Dynamics,” John Wiley & Sons, Inc., 1968.
    [66] Physik Instrumente Catalogs, 1998.
    [67] L. Castaner, A. Rodriguez, J. Pons, and S. D. Senturia, “Pull-in Time-Energy Product of Electrostatic Actuators: Comparison of Experiments with Simulation,” Sensors and Actuators, Vol. 83, pp. 263-269, 2000.

    下載圖示 校內:立即公開
    校外:2004-07-19公開
    QR CODE