簡易檢索 / 詳目顯示

研究生: 宋彥澤
Song, Yen-Ze
論文名稱: 煤油與過氧化氫雙凝膠噴霧自燃點火
Hypergolic Ignition of Kerosene and Hydrogen Peroxide Bi-Propellant Gel Sprays
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 171
中文關鍵詞: 滴落測試凝膠推進劑凝膠噴霧自燃噴霧
外文關鍵詞: gel propellant, gel spray, droplet test, hypergolic
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要i 致謝vi 目錄vii 表目錄xi 圖目錄xii 縮寫列表xx 符號列表xxi 第一章、緒論1 1-1研究背景與動機1 1-2 文獻回顧4 凝膠推進劑配方4 凝膠噴霧霧化方式7 環境壓力對凝膠噴霧樣態影響11 凝膠滴落測試14 自燃推進劑噴霧燃燒16 常壓液態噴霧燃燒測試17 常壓凝膠噴霧燃燒測試18 煤油凝膠噴霧燃燒特性19 1-3 研究目的21 1-4 本文架構21 第二章、實驗原理與設備23 2-1 凝膠推進劑配置23 煤油凝膠配方23 過氧化氫凝膠配方24 公升級凝膠製備系統25 公升級硼氫化鈉煤油凝膠製備流程26 公升級過氧化氫製備流程27 2-2 流變儀與特性量測與原理28 流變特性與流變儀量測原理28 Viscosity 量測步驟32 Amplitude sweep 量測步驟33 2-3凝膠噴霧平台架設34 壓力旋流式噴嘴34 陣列噴嘴設計與委商製造35 常壓凝膠噴霧實驗平台37 高壓噴霧專用高壓艙設計與委商製造38 高壓凝膠噴霧實驗平台43 2-4凝膠噴霧分析方法44 拍攝影像畫面解析度驗測45 凝膠噴霧之粒徑分析46 2-5 煤油凝膠滴落測試平台50 煤油凝膠推進劑滴落測試平台50 2-6常壓凝膠自燃噴霧燃燒縮尺實驗51 2-7陣列噴嘴之常壓凝膠自燃噴霧燃燒平台53 第三章、凝膠流變性質與噴霧特性56 3-1凝膠物性量測56 凝膠密度量測56 凝膠表面張力量測57 3-2凝膠流變特性58 煤油凝膠凝膠黏度對剪切應力的關係58 煤油凝膠振幅掃描60 過氧化氫凝膠黏度對剪切應力的關係61 過氧化氫凝膠振幅掃描62 3-3黏滯性對噴注壓差與凝膠流量關係63 3-4噴注壓差對凝膠噴霧的影響64 驅動壓差對噴霧樣態顯影之影響64 壓力對凝膠噴霧噴霧角之影響67 壓力對凝膠噴霧破碎距離之影響67 3-5環境壓力對凝膠噴霧顯影影響68 環境壓力對凝膠噴霧樣態顯影之影響68 環境壓力對凝膠噴霧微距顯影之影響71 環境壓力對凝膠噴霧噴霧角之影響72 環境壓力對凝膠噴霧粒徑之影響73 3-6驅動壓差對陣列噴嘴凝膠噴霧樣態影響74 3-7小結79 第四章、煤油及過氧化氫凝膠組合之反應延遲81 4-1不同催化劑反應延遲影響81 4-2催化劑比例對反應延遲影響82 4-3過氧化氫濃度對反應延遲影響85 4-4安定劑對反應延遲影響88 4-5小結91 第五章、硼氫化鈉煤油凝膠與過氧化氫凝膠噴霧常壓自燃點火92 5-1煤油凝膠與過氧化氫凝膠流量測試92 5-2硼氫化鈉煤油凝膠與過氧化氫凝膠自燃噴霧縮尺實驗93 5-3陣列噴嘴自燃噴霧火焰型態影響95 驅動壓差對陣列噴嘴自燃噴霧火焰型態影響95 硼氫化鈉比例對陣列噴嘴自燃噴霧火焰型態影響96 陣列噴嘴之凝膠自燃噴霧特性量測103 5-4 小結105 第六章、結論107 6-1 結論107 6-2 未來展望111 參考文獻122 附錄A SHP163果膠有機膠流變特性與線燃速128 A-1 SHP163果膠有機膠流變量測128 SHP 163果膠有機凝膠黏滯性與剪切率測試128 SHP 163果膠有機凝膠頻幅掃描測試130 A-2 SHP163果膠有機膠線燃速測試132 附錄B同心軸接觸實驗137 附錄C粒徑分析程式碼142 附錄D HAN凝膠製備流程149

    [1] C.J. Brinker and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, San Diego, Academic Press, 1990.
    [2] D.C. Rapp and R.L. Zurawski (1988), Characterization of aluminum/RP-1 gel propellant properties, 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Massachusetts, Boston, July 11-13, 1988.
    [3] P.H.S. Santos, R. Arnold, W.E. Anderson, M.A. Carignano and O. Campanella (2010), Characterization of JP-8/SiO2 and RP-1/SiO2 gels, Eng Lett 18 (1), 1-8.
    [4] F. Tepper, M.I. Lerner and D.S. Ginley, Dekker encyclopedia of nanoscience and nanotechnology, New York, Marcel Dekker, 2004.
    [5] S.Y. Jejurkar, G. Yadav and D.P. Mishra, Characterization of impinging jet sprays of gelled propellants loaded with nanoparticles in the impact wave regime, fuel 288(15), 10-22.
    [6] A. Haddad, B. Natan and R. Arieli (2011), The performance of a boron-loaded gel-fuel ramjet, Prog Propul Phys 2, 499-518.
    [7] C G. Long, Reinforced gelled propellants, US Patent US3035950A, 1962.
    [8] K.F. Hodge, T.A. Crofoot and S. Nelson, Gelled propellants for tactical missile applications, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, California, 1999.
    [9] R.H. Globus, J.A. Cabeal, S.D. Rosenberg and E.M. vander Waal, System analysis of gelled space-storable propellants, NASA CR-112348, 1970, 1-88
    [10] D. Glushkov, K. Paushkina and A. Pleshko (2023), Gel Fuels: Preparing Rheology, Atomization, Combustion, Energies 16(1), 298.
    [11] K.K. Kuo, J E. Boyer and P J. Ferrara, Bi-propellant rocket motor having controlled thermal management, US Patent US20080173004A1, 2011.
    [12] A.A.A. Farghaly, Fabrication of Multifunctional Nanostructured Porous Materials, Virginia Commonwealth University, ProQuest Dissertations & Thesis, 10117841.
    [13] T. Kanda, Y. Mishina, S. Hayasako, S. Muramatsu, K. Yamada, R. Kato, Experimental study on high-frequency combustion instability of liquid-propellant rocket engines using off-design combustion model, Acta Astronautica 202, 598-608.
    [14] H. Singh, A. Kumar, A. Kumar, S. Mishra, P.K. Khanna and P.V. More (2020), Exploring the telechelic block copolymers of polybutadiene and caprolactone for composite propellant application, Materials Today Chemistry 16, 100244.
    [15] S. Rahimi, D. Hasan and A. Peretz (2004), Development of laboratory-scale gel-propulsion technology, J Propul Power 20(1), 93-100.
    [16] B.S. Min, J. Lee, S.J. Kim and H.M. Shim (2022), Propiolate-Terminated Polybutadiene-Based Network Binders for Solid Propellants via Catalyst-Free Azide-Alkyne Cycloaddition, Propellants, Explosives, Pyrotechnics 47(11), e202200162.
    [17] C G. Long, Reinforced gelled propellants, US Patent US3035950A, 1962.
    [18] D. Yang, Z. Xia, L. Huang, L. Ma, B. Chen and Y. Feng (2020), Synthesis of metallized kerosene gel and its characterization for propulsion applications. Fuel 262, 116684.
    [19] Y. Chen, K. Xue, Y. Liu, L. Pan, X. Zhang and J J. Zou (2024), Preparation and properties of high-energy-density aluminum/boron-containing gelled fuels. Chinese Journal of Chemical Engineering 65, 230-242.
    [20] M G. Li, Y. Wu, Q L. Cao, X Y. Yuan, X. Chen, J L. Han, W T. Wu (2022), Rheological Properties of Organic Kerosene Gel Fuel. Gels 8, 507.
    [21] N. Rasmont, E. Broemmelesiek and J. Rovey (2020), Linear burn rate of green ionic liquid multimode monopropellant, Combustion and Flame 219, 212-224.
    [22] S.Y. Jejurkar, G. Yadav and D.P. Mishra (2018), Visualizations of sheet breakup of non-newtonian gels loaded with nanoparticles, International Journal of Multiphase Flow 100, 57-76.
    [23] T.L. Connell, G.A. Risha and R.A. Yetter (2018), Ignition of hydrogen peroxide with gel hydrocarbon fuels, Journal of Propulsion and Power 34(1), 170-181.
    [24] J.Y. Weng and Y.H. Liu (2024), Experimental study on impinging jet atomization using doublet and quadruplet jets, Energies 17, 1200.
    [25] J.V. Kampen, F. Alberio and H.K. Ciezki (2007), Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector, Aerospace Science and Technology 11(1), 77-83.
    [26] T.L. Connell, G.A. Risha, R.A. Yetter and B. Natan (2018), Hypergolic ignition of hydrogen peroxide/gel fuel impinging jets, Journal of Propulsion and Power 34(1), 182-188.
    [27] G.D. Martin, S.D. Hoath and I.M. Hutchings (2008), Inkjet printing- the physics of manipulating liquid jets and drops, Journal of Physics: Conference Series 105(1), 012001.
    [28] C. Ramasubramanian, V. Notaro and J.G. Lee (2015), Characterization of near-field spray of non-gelled and gelled-impinging doublets at high pressure, Journal of Propulsion and Power 31, 1642-1652.
    [29] S.D. Sovania, P.E. Sojkaa and A.H. Lefebvre (2001), Effervescent atomization, Progress in Energy and Combustion Science 27, 483-521.
    [30] A. Mansour and N. Chigier (1995), Air-blast atomization of non-newtonian liquids, Journal of Non-Newtonian Fluid Mechanics 58, 161-194.
    [31] M.B. Padwal and D.P. Mishra (2022), Performance of Two-Fluid Atomization of Gel Propellant, Journal of Propulsion and Power 38, 30-39.
    [32] A.L. Yarin (2006), Drop impact dynamics: splashing, Annual Review of Fluid Mechanics 38, 159-192.
    [33] B.C. Urbon, Atomization and combustion of a gelled, metallized slurry fuel, Master Thesis, Naval Postgraduate School, USA, 1992.
    [34] L.J. Yang, Q.F. Fu, Y.Y. Qu, W. Zhang, M.L. Du and B.R. Xu (2012), Spray characteristics of gelled propellants in swirl injectors, Fuel 97, 253-261.
    [35] H.S. Guan, G.X. Li and N.Y. Zhang (2018), Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant, Acta Astronautica 144, 199-155.
    [36] H. Kim, T. Ko, S. Kim and W. Yoon (2017), Spray characteristics of aluminized-gel fuels sprayed using pressure-swirl atomizer, Journal of Non-Newtonian Fluid Mechanics 249, 36-47.
    [37] F. Bai, Q. Chang, S. Chen, J. Guo, K. Jiao and Q. Du (2017), Experimental investigation on the spray characteristics of power-law fluid in a swirl injector. Fluid Dynamics Research 49(3), 035508.
    [38] L. Yang, Q. Fu, Y. Qu, B. Gu and M. Zhang (2012), Breakup of a power-law liquid sheet formed by an impinging jet injector, Int. J. Multiphase Flow 39, 37–44.
    [39] L. Yang, Q. Fu, Y. Qu, W. Zhang, M. Du and B. Xu (2012) Spray characteristics of gelled propellants in swirl injectors, Fuel 97, 253–261.
    [40] Z.M. Liu, J.Y. Lin, H.L. Zheng, Y. Pang (2020), Effect of viscosities on the spray characteristics of pressure swirl nozzle, J. Appl. Fluid Mech 13, 861-870.
    [41] H. Kim, T. Ko, S. Kim, and W. Yoon (2017), Spray characteristics of aluminized-gel fuels sprayed using pressure-swirl atomizer. Journal of Non-Newtonian Fluid Mechanics 249, 36–47.
    [42] N. Dombrowski and W. R. Johns (1963), The aerodynamic instability and disintegration of viscous liquid sheets, Chemical Engineering Science 18(7), 470.
    [43] C. Ramasubramanian, V. Notaro and J.G. Lee (2015), Characterization of Near-Field Spray of Nongelled- and Gelled-Impinging Doublets at High Pressure, Journal of Propulsion and Power 31(6), 1642–1652.
    [44] S. Fakhri, J. G Lee and R.A. Yetter (2010), Effect of Nozzle Geometry on the Atomization and Spray Characteristics of Gelled-Propellant Simulants Formed by Two Impinging Jets, Atomization and Sprays 20(12), 1033–1046.
    [45] N. Bremond and E. Villermaux (2006), Atomization by Jet Impact, Journal of Fluid Mechanics 549(1), 273–306.
    [46] K. Madlener, H.K. Ciezki, J. Kampen, B. Heislbetz and A. Feinauer, Characterization of Various Properties of Gel Fuels with Regard to Propulsion Application, AIAA Paper 2008-4870, July 2008.
    [47] Q. Fu, F. Ge, W. Wang and L. Yang (2019), Spray characteristics of gel propellants in an open-end swirl injector, Fuel 254, 115555.
    [48] F. S. Wang, J. Chen, T. Zhang, H.S. Guan and H. Li (2020), Experimental Study on Spray Characteristics of ADNWater Based Gel Propellant with Impinging Jet Injectors. Propellants Explosives. 45, 1-10.
    [49] B.V.S. Jyoti, M.S. Naseema, S.W. Baeka, H.J. Lee and S.J. Choc (2017), Hypergolicity and ignition delay study of gelled ethanolamine fuel, Combustion and Flame 183, 102-112.
    [50] H.Y. Nanlohy, H. Riupassa, I. Rasta and M. Yamaguchi (2020), An Experimental Study on the Ignition Behavior of Blended Fuels Droplets with Crude Coconut Oil and Liquid Metal Catalyst, Automotive Experiences 3, 39-45.
    [51] B. Elzein, O. Jobin and E. Robert (2021), Reducing the Ignition Delay of Hypergolic Hybrid Rocket Fuels, Journal of Propulsion and Power 37, 77-85.
    [52] D.A. Castaneda, B. Natan (2019), Experimental investigation of the hydrogen peroxide-solid hydrocarbon hypergolic ignition, Acta Astronautica 158, 286-295.
    [53] J. John, P. Nandagopalan, S.W. Baeka and S.J. Choc (2020), Hypergolic ignition delay studies of solidified ethanol fuel with hydrogen peroxide for hybrid rockets, Combustion and Flame 212, 205-215.
    [54] M.A. Ak, A. Ulas, B. Sümer, B. Yazıcı, C. Yıldırım, L.O. Gönc and F.E. Orhan (2011), An experimental study on the hypergolic ignition of hydrogen peroxide and ethanolamine, Fuel 90, 395-398.
    [55] S. Nath, I. Laso, L. Mallick, Z. Sobe, S. Koffler, B.B. Ganon, E. Borzin, N. Libis and J.K. Lefkowitz (2023), Comprehensive ignition characterization of a non-toxic hypergolic hybrid rocket propellant, Proceedings of the Combustion Institute 39, 3361-3370.
    [56] S. Li and X. Wei (2016), Ignition Delay Characteristics of Kerosenewith Decomposed Hydrogen Peroxide, Journal of Propulsion and Power 32, 431-438.
    [57] R. Goldin, S. Nath, J K. Lefkowitz and B. Natan (2024), Hypergolic ignition of a Kerosene-Based Gel Fuel with Hydrogen Peroxide in Rocket Motors, International Journal of Energetic Materials and Chemical Propulsion 23, 67-78.
    [58] T.J. Held and F.L. Dryer (1994), An experimental and computational study of methanol oxidation in the intermediate-and high-temperature regimes, Symposium (International) on Combustion 25, 901-908.
    [59] H. Kang, S. Park, Y. Park and J. Lee (2020), Ignition-delay measurement for drop test with hypergolic propellants: Reactive fuels and hydrogen peroxide, Combustion and Flame 217, 306-313.
    [60] C. He, Z.X. He and P. Zhang (2024), Droplet collision of hypergolic propellants, Droplet 3(2), 116.
    [61] S. Nath, L. Mallick and J K. Lefkowitz (2023), Hypergolic ignition response to oxidizer droplet properties, Combustion and Flame 258, 113061.
    [62] Y. Solomon and B Natan (2009), Combustion of gel fuels based on organic gellants, Combustion and Flame 156, 261-268.
    [63] S.D. Heister, W E. Anderson, C M. Corvalan, O H. Campanella, R P. Lucht, T L. Pourpoint, P E. Sojka, S F. Son, D P. Schmidt, T R. Meyer, Spray and Combustion of Gelled Hypergolic Propellants, Purdue University Lafayette IN, 2014.
    [64] M B. Padwal and D P. Mishra (2016), Characteristics of gelled Jet A1 sprays formed by internal impingement of micro air jets, Fuel 185, 599-611.
    [65] B. Natan, Y. Solomon and V. Perteghella (2011), Hypergolic ignition by fuel gellation and suspension of reactive or catalyst particles, J Propul Power 27(5), 1145-1148.
    [66] Y. Solomon and B. Natan (2006), Experimental investigation of the combustion of organic-gellant-based gel fuel droplets, Combust Sci Technol 178(6), 1185-1199.
    [67] P H S. Santos, M A. Carignano and O H. Campanella, Investigation of Thixotropy in Gelled Jet Propellant, WECES paper, USA, October 20-22, 2010.
    [68] M B. Padwal and D P. Mishra (2013), Synthesis of Jet A1 gel fuel and its characterization for propulsion applications, Fuel Processing Technology 106, 359-365.
    [69] D P. Mishra and A. Patyal (2012), Effects of initial droplet diameter and pressure on burning of ATF gel propellant droplets, Fuel 95, 226-233.

    無法下載圖示 校內:2029-08-30公開
    校外:2029-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE