簡易檢索 / 詳目顯示

研究生: 余適伯
Yu, Shih-po
論文名稱: 具奈米溝槽結構介電層之有機薄膜電晶體
Organic Thin Film Transistors With Nanogroove Gate Dielectrics
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 週期性奈米結構有機場效電晶體五環素
外文關鍵詞: Pentacene, nanogroove dielectric, OTFT, organic field effect transistor
相關次數: 點閱:72下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以五環素(Pentacene)為主動層並利用奈米轉印技術(Nanoimprinting)製作週期性溝槽結構的介電層,五環素在磊晶時因週期性溝槽的影響,磊晶成長出五環素塊材結構較大的半導體層。實驗中透過四個不同週期(800 nm、1200 nm、1600 nm、2400 nm)的週期性溝槽結構介電層,去探討五環素磊晶為主動層之有機場效電晶體的差異,由原子力電子顯微鏡(Atomic Force Microscope)觀察出在奈米溝槽結構週期為1600 nm時五環素有較佳結晶結構。電性量測發現,載子移動率(Mobility)在電場平行週期性溝槽結構與垂直週期性溝槽介電層結構的異向性比在週期為1600 nm時達到最高,且較其他不同配向方法之研究效果更佳,可達200倍;而不同週期溝槽元件的電性量測,也得到在週期性溝槽結構為1600 nm時,載子移動率亦達到最高為2.64 cm2/Vs。在材料分析上,偏極化微拉曼激發光譜分析結果指出,在奈米結構修飾層週期為1600 nm時,其主動層的五環素分子排列的次序最為一致,此結果證明了為何在週期為1600 nm的修飾層上會有最佳的載子移動率。

    Pentacene is a very popular material to be the semiconductor layer on organic-thin-film-transistors (OTFT) because of its high operating performance in recently decades. In this experiment, we constructed a periodic nanogroove dielectric layer by hot embossing nanoimprint lithography in organic thin film transistors to achieve high field-effect mobility and ultrahigh anisotropic ratio of the mobility (> 200) defined as the mobility ratio of parallel nanogroove to perpendicular nanogroove. There were four periods, including 800, 1200, 1600, and 2400 nm, of nanogrooves dielectric to be constructed. In the discussion, the OTFT with 1600 nm nanogroove dielectric layer had the highest field-effect mobility of 2.64 cm2/Vs analyzed from the transfer curve in which the direction of electric field between source and drain is parallel to that of the nanogrooves. It also had the highest anisotropic ratio of mobility 203. Micro-Raman analyses indicated that the OTFT with 1600 nm nanogroove dielectric had the best molecular ordering for pentacene film to result in the best operating performance. Atomic Force Microscopes (AFM) also convinced this result of the most uniform and biggest grains on 1600 nm nanogroove dielectric.

    中文摘要………………………………………………………………I Abstract………………………………………………………………II 致謝……………………………………………………………………III 目次……………………………………………………………………IV 表目錄…………………………………………………………………VIII 圖目錄…………………………………………………………………IX 第1章 簡介……………………………………………………………1 1.1有機半導體…………………………………………………………1 1.1.1有機半導體之簡介………………………………………………1 1.1.2半導體的傳輸機制………………………………………………2 1.2五環素簡介…………………………………………………………3 1.3薄膜電晶體…………………………………………………………4 1.4有機薄膜電晶體……………………………………………………4 1.4.1有機薄膜電晶體傳輸機制………………………………………5 1.4.2有機薄膜電晶體的參數及公式…………………………………6 1.5奈米壓印技術………………………………………………………7 1.5.1奈米壓印的發展…………………………………………………7 1.5.2奈米轉印技術……………………………………………………8 第2章 實驗及量測儀器介紹…………………………………………17 2.1有機薄膜電晶體的製程…………………………………………17 2.2 物理氣相沈積蒸鍍系統…………………………………………17 2.3 晶圓切割機………………………………………………………18 2.4 反應離子蝕刻機…………………………………………………19 2.5 分析儀器…………………………………………………………21 2.5.1 原子力顯微鏡………………………………………21 2.5.2 微拉曼光譜激發儀……………………………………………23 2.6 電性量測…………………………………………………………27 2.6.1 Keithly 4200…………………………………………………27 第3章 具奈米結構介電層之有機薄膜電晶體………………………32 3.1 前言………………………………………………………………32 3.2 實驗目的…………………………………………………………33 3.3 實驗方法…………………………………………………………33 3.3.1 清洗基板及基板前置作業…………………………30 3.3.2 清洗模仁及模仁前置作業…………………………36 3.3.3 奈米轉印……………………………………………37 3.3.4 蝕刻…………………………………………………38 3.3.5 元件製作……………………………………………39 第4章 元件電性分析及材料分析……………………………………46 4.1 不同週期溝槽結構介電層對薄膜電晶體的電性分析及比較…46 4.2.1原子力顯微鏡分析……………………………………………49 4.2.2微拉曼激發光譜分析…………………………………………51 第5章 結論與未來展望………………………………………………80 參考文獻………………………………………………………………82

    [1]. J. Bardeen, W. H. Brattain, “The transistor, a semi-conductor triode” Phys. Rev. 74, 230 (1948).
    [2]. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gan, A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene” Phys. Rev. lett. 39, 1098 (1977).
    [3]. C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater. 14, 99 (2002).
    [4]. B. H. Hamadani, D. J. Gundlach, “Undoped polythiophene field-effect transistors with mobility of 1 cm2 V−1 s−1” Appl. Phys. Lett. 91, 243512 (2007).
    [5]. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, “A high-mobility electron-transporting polymer for printed transistors” Nature 457, 679 (2009).
    [6]. J. Li, F. Qin, C. M. Li, Q. Bao, M. B. C. Park, W. Zhang, J. Qin, B. S. Ong, “High-performance thin-film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles” Am. Chem. Soc. 20, 6 (2008).
    [7]. S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi, ”High mobility n-type thin-film transistors based on N, N-ditridecyl perylene diimide with thermal treatments” Appl. Phys. Lett. 89, 112108 (2006).
    [8]. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, “C60 thin-film transistors with high field-effect mobility, fabricated by molecular beam deposition” Sci. Technol. Adv. Mater. 4, 371 (2003).
    [9]. H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, “Ultralow-power organic complementary circuits” Nature 445, 745 (2007).
    [10]. M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, C. Rovira, “High-mobility tetrathiafulvalene organic field-effect transistors from solution processing” Org. Electron. 9, 1101 (2008).
    [11]. S. Liu, C. B. Mannsfeld, M. C. LeMieux, H. W. Lee, Z. Bao, “Organic semiconductor-carbon nanotube bundle bilayer field effect transistors with enhanced mobilities and high on/off ratios” Appl. Phys. Lett. 92, 053306 (2008).
    [12]. A. Kingon, “Device physics: memories are made of ...” Nature 401, 658 (1999)
    [13]. S. Lee, B. Koo, J. Shin, E. Lee, H. Park, H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance” Appl. Phys. Lett. 88, 162109 (2006)
    [14]. R. G. D. Valle, A. Brillante, E. Venuti, L. Farina, A. Girlando, M. Masino, “Exploring the polymorphism of crystalline pentacene” Org. Electron. 5, 1 (2004).
    [15]. C. C. Mattheus, G. A. de Wijs, R. A. de Groot, T. T. M. Palstra, “Modeling the polymorphism of pentacene” J. Am. Chem. Soc. 125, 6323 (2003).
    [16]. Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. P. Calbert, J. Cornil, J. L. Brédas, “Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation” J. Chem. Phys. 118, 3764 (2003).
    [17]. 買昱椉, “有機半導體分子排列的基礎研究與對有機薄膜電晶體的應用” 國立成功大學碩士論文 (2004).
    [18]. R. Ruiz, B. Nickel, N. Koch, N. Koch, L. C. Feldman, R. Haglund, A. Kahn, G. Scoles, “Pentacene ultrathin film formation on reduced and oxidized Si surfaces” Phys. Rev. B, 67, 125406 (2003).
    [19]. H. Koezuka, A. Tsumura, T. Ando, “Field-effect Transistors with polythiophene thin film” Synth. Met. 18, 699 (1987).
    [20]. S. Y.Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers” Appl. Phys. Lett. 67, 3114 (1995).
    [21]. M.Otto, M. Bender, B. Hadam, B. Vratzov, B. Spangenberg, H. Kurz, “Characterization and application of a UV-based imprint technique” Microelectron. Eng. 57, 361 (2001).
    [22]. Y. Xia, D. Qin, G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features” Adv. Mater. 8, 1015 (1996).
    [23]. Y. C. Lee, C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching” J. Micromech. Microeng. 18, 7 (2008).
    [24]. G. Binnig, H. Rohrer, C. Gerber, E. weibel, “Surface studies by scanning tunneling microscopy” Phys. Rev. Lett. 49, 57 (1982).
    [25]. G. Binnig, C. H. Quate, C. Gerber, “Atomic force microscope” Phys. Rev. Lett. 56, 930 (1986)..
    [26]. T. M. K. Nedungadi, “Conical refraction in naphthalene crystals”, Proc. Indian. Acad. Sci. 14, 221 (1941)
    [27]. J. R. Ferraro, K. Nakamoto, C. W. Brown, “Introductory raman spectroscopy” Academic Press. (2002).
    [28]. W. Y. Chou, H. L. Cheng, “An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications” Adv. Funct. Mater. 14, 811 (2004).
    [29]. S. J. Kang, Y. Y. Noh, K. J. Baeg, J. Ghim, J. H. Park, D. Y. Kim, J. S. Kim, K. Cho, “Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors” Appl. Phys. Lett. 92, 052107 (2008).
    [30]. M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, R. L. Headrick, B. T. Weslowski, R. N. Shashidhar, C. S. Dulcey, “Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics” Appl. Phys. Lett. 79, 1300 (2001).
    [31]. S. H. Jin, H. U. Seo, D. H. Nam, W. S. Shin, J. H. Choi, U. C. Yoon, J. W. Lee, J. G. Song, D. M. Shin, Y. S. Gal, “Surface-induced alignment of pentacene by photo-alignment technology for organic thin film transistors” J. Mater. Chem. 15, 5029 (2005) .
    [32]. J. J. Sung , S. K. Chang, J. L. Min, B. K. Jong, Y. R. Seung, H. N. Joo, I. Kyuwook, K. Baik, H. Youn, K. Sang, “Inducement of azimuthal molecular orientation of pentacene by imprinted periodic groove patterns for organic thin-film transistors” Adv Mater. 20, 1146 (2008).
    [33]. D. Cui, H. Li, H. Park, X. Cheng, “Improving organic thin-film transistor performance by nanoimprint-induced chain ordering” J. Vac. Sci. Technol. 26, 2404 (2008).

    下載圖示 校內:2014-07-31公開
    校外:2014-07-31公開
    QR CODE