簡易檢索 / 詳目顯示

研究生: 邱正宇
Chiu, Cheng-Yu
論文名稱: 雷射輔助滾輪式奈米直壓印及 接觸轉印與遮罩植入式顯影於微奈米結構製造與應用
Laser-Assisted Direct Roller Imprinting and Contact-Transferred & Mask-Embedded Lithography for Micro/Nano-Structures Fabrication and Applications
指導教授: 李永春
Lee, Yung-Chun
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 123
中文關鍵詞: 滾輪壓印奈米壓印準分子雷射微影接觸轉印金屬轉印遮罩植入可撓式聚醯亞胺有機薄膜電晶體偏光板
外文關鍵詞: roller imprinting, nanoimprinting, excimer laser, lithography, contact printing, metal transfer, mask embedded, flexibile, polyimide, OTFT, polarizer
相關次數: 點閱:184下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米壓印與奈米轉印法為具有製作圖案或結構線寬尺寸低於100 nm之非傳統之奈米圖型佈植技術。此項新式奈米圖形佈值技術具有高製作效能、低成本、製程儀器簡單與製作時間快速等優勢,極具有成為下一世代微奈米圖形佈值技術的潛力。本文成功地發展出一快速且連續式的奈米滾輪壓印技術與一新式奈米轉印之方法,經由實驗結果顯示,此奈米壓印與轉印方法具有製作微奈米結構的能力,並且可以應用在光學與電子元件的開發與製作。
    本論文的研究可根據奈米壓印或轉印製程中,有無使用中介材料作為微奈米圖形定義的緩衝材料層為標準,將論文內容區分為二大部份。首先,論文的第一部份提出以雷射輔助滾輪式直壓印法(Laser-Assisted Roller direct Imprinting,簡稱LARI),用於解決傳統平面式雷射輔助直壓印(Laser-assisted Direct Imprinting,簡稱LADI)的缺點與所遭遇之限制。滾輪式雷射輔助直壓印技術平台藉由導入一高透UV光之柱狀石英元件,以提供壓印所需之線接觸式的集中壓印應力於預壓印之矽晶圓基板上;同時,柱狀石英元件能將準分子雷射光束進行光照射面積的倍縮,進而提昇矽晶圓表面單位照射面積上之雷射能量,完成連續式壓印微奈米尺寸之特徵圖形於矽晶圓表面。實驗結果顯示,滾輪式雷射輔助直壓印技術可以速度為1.5 cm2/min的速度,快速且成功地完成線寬400 nm,壓印面積大小為5 x 30 mm2 的柵狀奈米結構於矽晶圓基板表面上。
    論文的另一部份介紹自行開發的新式奈米轉印技術,並將之稱為接觸轉印與遮罩植入式顯影(Contact-transferred and Mask-Embedded Lithography, 簡稱CMEL)。相較於其他奈米壓印或轉印方法,接觸轉印與遮罩植入式顯影技術的特點是可在相對低溫度與低壓印力下,於緩衝材料層上,進行微奈米尺寸之特徵圖形的金屬薄膜轉印技術。經實驗結果顯示,接觸轉印與遮罩植入式顯影技術可以大面積地將線寬65 nm的特徵圖形金屬薄膜轉印於緩衝材料層表面,並且可有效抵擋乾式蝕刻的作用,完成高深、寬比的奈米結構製作。此外,接觸轉印與遮罩植入式顯影技術可在相對低溫的壓印環境,於光學與電子元件製作中,所廣泛使用的熱固性材料聚醯亞胺表面上製作奈米結構。論文最後以接觸轉印與遮罩植入式顯影技術製作有機薄膜電晶體與可撓式偏光板,實驗結果顯示,接觸轉印與遮罩植入式顯影技術具有潛力成為下一世代奈米圖形佈值與結構製作的有效工具。

    Nano-impriting and nano-printing are unconventional nano-patterning techniques for fabricating nano-structures with the advantages of small line-width (less than 100 nm), high throughput, low cost, and using simplified equipments and processing procedures. This dissertation has successfully developed several new types of nano-imprinting and nano-patterning methods and demonstrated their capabilities in fabricating micro/nano-structures with applications on optical and electrical devices.

    The works presented in this dissertation can be divided into two parts according to whether a transition polymer layer is used in transferring patterns from a mold to a substrate. In the first part, a roller-based laser-assisted direct imprinting method (LADI) is proposed to overcome the drawbacks and limitations of conventional planar type LADI. The improvement in LADI has been achieved mainly by including a quartz roller which can focus a laser beam into a line and provide a uniform line contact pressure, and therefore allows continuous and direct formation of micro/nano-structures on substrates based on pulsed laser heating and contact loading pressure. Linear gratings with a line width of 400 nm have been patterned on a silicon substrate with an area size of 5 x 30 mm2 in a rate of 1.5 cm2/min.

    On the second part of this dissertation, a novel contact nano-printing method named contact-transferred and mask-embedded lithography (CMEL) has been developed using a transition layer. This CMEL method is a low temperature nano-printing technique which transfers a patterned metal layer from a mold to a polymer layer on top of a substrate surface. It can achieve a resolution of 65 nm in large area patterning and the transferred metal patterns can efficiently resist dry etching process to fabricate nano-structures with a high aspect ratio. CMEL has a great potential for patterning nano-patterns on various materials. Among them, polyimide, a thermal setting polymer widely used in optical and electrical devices, has been demonstrated with CMEL and the nano-patterning can be executed at a relatively low temperature. Finally, the CMEL techniques have been a pplied to the fabrication of organic thin film transistors (OTFTs) device and a flexible nano-wired grid polarizer (NWGP). Experimental results successfully show that CMEL indeed has great potential as a powerful nano-patterning and nano-fabrication method for a variety of applications.

    Abstract (Chinese).........................................i Abstract (English).......................................iii Acknowledgement..................................v Table of Contents.........................................vi List of Tables............................................ix List of Figures............................................x Nomenclatures...........................................xvii Chapter 1 Introduction...................................1 1.1 Background.............................................1 1.2 Literature review......................................2 1.3 Dissertation objectives and organization...............7 Chapter 2 Laser-assisted Direct Roller Imprinting........8 2.1 Introduction...........................................8 2.2 Laser-assisted direct roller imprinting (LARI).........8 2.3 Experimental setup....................................11 2.3.1 Mold fabrication.................................11 2.3.1.1 Quartz mold fabrication with micrometer features..................................................11 2.3.1.2 Quartz mold fabrication with sub-micrometer features..................................................13 2.3.2 LARI platform setup .............................15 2.4 LARI process and results..............................20 2.4.1 Micrometer scaled imprinting and results.........20 2.4.2 Sub-micrometer scaled imprinting and results.....22 2.5 Analysis and discussion...............................24 2.5.1 Optical modeling.................................24 2.5.2 Mechanism modeling...............................26 2.5.3 Discussion.......................................28 2.6 Summary ..............................................29 Chapter 3 Micro/Nano-lithography Based on Contact-transferred and Mask-embedded Lithography.................30 3.1 Introduction..........................................30 3.2 Advantages of CMEL nano-patterning....................31 3.3 Contact-transferred and mask-embedded lithography.....31 3.4 Experimental details and results......................33 3.4.1 Imprint mold preparation.........................33 3.4.2 Nano-patterning..................................34 3.4.3 Resolution of CMEL...............................38 3.5 Discussion............................................39 3.5.1 Criteria for choosing the thickness of the relief metal film................................................39 3.5.2 Criteria for choosing the thickness of the polymer resist....................................................40 3.5.3 A great diversity of metals for being the relief nanostructures............................................40 3.5.4 The feasibility of multiple usage of the mold....41 3.6 Summary...............................................42 Chapter 4 Fabrication of Polyimide Micro/nano-structures Based on Contact-transferred and Mask-embedded Lithography...............................................44 4.1 Introduction..........................................44 4.2 Review of micro/nano-structures on polyimides fabrication techniques....................................45 4.2.1 Photosensitive polyimides patterning.............45 4.2.2 Non-photosensitive polyimides patterning.........46 4.3 Micro/Nano-structures patterning on polyimides by CMEL lithography ..............................................50 4.4 Experimental details and results......................51 4.5 Discussion............................................57 4.5.1 Fidelity of patterns transferred by double layer type CMEL.................................................57 4.5.2 The embedded depth of relief metal films.........58 4.6 Summary...............................................60 Chapter 5 Fabrication of Organic Thin-film Transistors by Contact-transferred and Mask-embedded Lithography.........62 5.1 Introduction..........................................62 5.2 Organic thin film transistors configuration...........63 5.3 Experimental detail...................................67 5.4 Electronic characteristics experimental results.......71 5.5 Summary...............................................75 Chapter 6 Fabrication of Flexible Nano-wire Grid Polarizer Based on Contact-transferred and Mask-embedded Lithography...............................................76 6.1 Introduction..........................................76 6.2 Experimental setup....................................77 6.2.1 Flexible NWGPs fabrication.......................77 6.2.2 Optical measurement setup........................79 6.3 Experimental results..................................82 6.3.1 Type one flexible NWGP...........................82 6.3.2 Type two flexible NWGP...........................93 6.4 Discussion ..........................................100 6.4.1 Optimization of type one flexible NWGP..........100 6.4.2 Optimization of type two flexible NWGP..........103 6.5 Summary ..........................................107 Chapter 7 Conclusions and Future Works.................109 7.1 Conclusions.......................................109 7.2 Future works......................................111 References...............................................113 Vita.....................................................120 Publications ............................................121

    [1] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67 (21), p.3114-3116 (1995).

    [2] W. Zhang and S. Y. Chou, “Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels,” Appl. Phys. Lett. 83 (8), p.1632-1634 (2003).

    [3] T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci.Technol. B 18 (6), p.3572–3577 (2000).

    [4] G. Y. Jung, S. Ganapathiappan, D. A. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong, and R. S. Williams, “Fabrication of a 34×34 Crossbar Structure at 50 nm Half-pitch by UV-based Nanoimprint Lithography,” Nano Lett. 4(7), p.1225–1229 (2004).

    [5] X. M. Zhao, Y. Xia and G. M. Whitesides, “Soft lithography methods for nano-fabrication,” J. Mater. Chem. 7(7), p.1069-1074 (1997).

    [6] Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, p.153-184 (1998).

    [7] S. Y. Chou, C. Keimel, J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature 417, p.835-837 (2002).

    [8] Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, and S.Y. Chou, “Ultrafast patterning of nanostructures in polymers usings laser assisted nanoimprint lithography,” Appl. Phys. Lett. 83, p.4417-4419 (2003).

    [9] B. Cui, W. Wu, C. Keimel, and S.Y. Chou, “Filling of nano-via holes by laser-assisted direct imprint,” Microelectron. Eng. 83, p.1547–1550 (2006).

    [10] Y.-C. Lee, C.-Y. Chiu, and F.-B. Hsiao, “Laser assisted roller imprinting,” Proc. IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., p.731-734 (2007).

    [11] Y.-C. Lee, C.-H. Chen, C.-Y. Chiu, S. H. Chang, F.-Y. Chang, H.-Y. Lin, and W.-L. Lang, “Roller-based laser assisted direct imprinting for nanofabrication,” IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., NEMS, p.296-299 (2008).

    [12] Y.-C. Lee, C.-Y. Chiu, C.-H. Chen and J.-H. Tsai, “Roller-based laser-assisted direct imprinting for large-area and continuous nano-fabrication,” Microelectron. Eng., doi:10.1016/j.mee.2009.05.031 (2009)(in press).

    [13] H. Tan, A. Gilbertson, S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), p.3926–3928 (1998).

    [14] J. A. Rogers, Z. Bao, A. Makhija and P. Braun, “Printing process suitable for reel-to-reel production of high-performance organic transistors and circuits,” Adv. Mater. 11(9), p.741–745 (1999).

    [15] Pin-Chang Chen, Fabrication of seamless roller mold with micrometer-scaled features using excimer laser direct writing technology, Master Thesis of Department of Mechanical Engineering of National Cheng Kung University (2007).

    [16] F.-B. Hsiao, C.-P. Jen, D.-B. Wang, C.-H. Chuang, Y.-C. Lee, C.-P. Liu, and H.-J. Hsu, “An analytical modeling of heat transfer for laser-assisted nanoimprinting process,” Comput. Mech. 37, p.173–181 (2006).

    [17] Y.-C. Lee, M.-H. Chung, J.-Y. Ruan, and F.-B. Hsiao, “A theoretical model for laser assisted direct imprinting (LADI),” Proc. IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., p.493-496 (2007).

    [18] S. Y. Chou, C. Keimel, J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature 417, p.835-837 (2002).

    [19] Y.-C. Lee and C.-Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng. 18, 075013, p.1-7 (2008).

    [20] D. B. Wolfe, J. C. Love, B. D. Gates, G. M. Whitesides, R. S. Conroy and M. Prentiss, “Fabrication of planar optical waveguides by electrical microcontact printing,” Appl. Phys. Lett. 84(10), p.1623-1625 (2004).

    [21] Y. Xia, M. Mrksich, E. Kim and G. M. Whitesides, “Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication,” J. Am. Chem. Soc. 117, p.9576-9577 (1995).

    [22] Y.-L. Loo, J. W. P. Hsu, R. L. Willett, K. W. Baldwin, K. W. West and J. A. Rogers, “High-resolution transfer printing on GaAs surfaces using alkane dithiol monolayers,” J. Vac. Sci. Technol. B 20 (6), p.2853-2856 (2002).

    [23] Y.-L. Loo, R. L. Willett, K. W. Baldwin and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124, p.7654-7655 (2002).

    [24] Y.-L. Loo, R. L. Willett, K. W. Baldwin and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), p.562-564 (2002).

    [25] G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21, p.1158-1161 (2005).

    [26] S.-W. Youn, T. Noguchi, M. Takahashi and R. Maeda, “Dynamic mechanical thermal analysis, formation and mold fabrication studies for hot-embossing of a polyimide microfludic platform,” J. Micromech. Microeng. 18, 045025, p.1-9 (2008).

    [27] R. Rubner, “Innovation via photosensitive polyimide and poly(benzoxazole) precursors- a review by inventor,” J. Photopolym. Sci. Technol. 17(5), p.685-691 (2004).

    [28] S. Yagi, T. Itatani, H. Kawanami, S. Gorwadkar, T. Uemura, T. Fukushima, H. Itatani, M. Tomoi and M. Tacano, “Ultrafast active transmission lines with low-k polyimide integrated with ultrafast photoconductive switches,” Jpn. J. Appl. Phys. 42, p.L154-156 (2003).

    [29] T. Shioda, “Fluorinated polyimide waveguide fabricated using replication process with antisticking layer,” Jpn. J. Appl. Phys. 41, p.1379-1385 (2002).

    [30] N. Agarwal, S. Ponoth, J. Plawsky and P. D. Persans, “Optimized oxygen plasma etching of polyimide films for low loss optical waveguides,” J. Vac. Sci. Technol. A 20(5), p.1587-91 (2002).

    [31] D.-R. Chiou and L.-J. Chen, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir 22, p.9403-9408 (2006).

    [32] H. Hah, S.-J. Sung, M. Han, S. Lee and J.-K. Park, “Effect of the shape of imprinted alignment layer on the molecular orientation of liquid crystal,” Mater. Sci. Eng. C 27, p.798-801 (2007).

    [33] W.-Y. Chou and H.-L. Cheng, “An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications,” Adv. Funct. Mater. 14(8), p.811-815 (2004).

    [34] Jr. R. R. Richardson, J. A. Miller and W. M. Reichert, “Polyimides as biomaterials: preliminary biocompatibility testing,” Biomaterials 14(8), p.627–635 (1993).

    [35] P. J. Rousche, D. S. Pellinen, D. P. Pivin, J. C. Williams, Vetter R J and Kipke D R, “Flexible polyimide-based intracortical electrode arrays with bioactive capability,” IEEE Trans. Biomed. Eng. 48(3), p.361-371 (2001).

    [36] K.-I. Fukukawa and M. Ueda, “Recent Progress of Photosensitive Polyimides,” Polym. J. 40(4), p.281–296 (2008).

    [37] J. A. Blach-Watson, G. S. Watson, C. L. Brown and S. Myhra, “UV patterning of polyimide: differentiation and characterization of surface chemistry and structure,” Appl. Surf. Sci. 235, p.164-169 (2004).

    [38] B. Cui, Y. Cortot and T. Veres, “Polyimide nanostructures fabricated by nanoimprint lithography and its applications,” Microelectron. Eng. 83, p.906–909 (2006)

    [39] I.-T. Pai, I.-C. Leu and M. H. Hon, “Nanostructures prepared on polyimide film by nano-imprinting with the assistance of residual solvent,” J. Micromech. Microeng. 16, p.2192-2196 (2006).

    [40] S.-W. Youn, T. Noguchi, M. Takahashi and R. Maeda, “Fabrication of micro mold for hot-embossing of polyimide microfluidic platform by using electron beam lithography combined with inductively coupled plasma,” Microelectron. Eng. 85, p.918-921 (2008).

    [41] J. L. Charest, L. E. Bryant, A. J. Garcia and W. P. King, “Hot embossing for micropatterned cell substrates,” Biomaterials 25, p.4767–4775 (2004).

    [42] Shuhong Liu, Wechung Maria Wang, Alejandro L. Briseno, Stefan C. B. Mannsfeld, and Zhenan Bao, “Controlled deposition of crystalline organic semiconductors for field-effect-transistor applications,” Adv. Mater. 21, p.1217–1232 (2009).

    [43] B.-D. Chan, K.-H. Hsieh, and S.-Y. Yang, “Fabrication of organic flexible electrodes using transfer stamping process,” Microelectron. Eng. 86, p.586-589 (2009).

    [44] Z.-T. Zhu, J. T. Mason, R. Dieckmann, G. G. Malliaras, “Humidity sensors based on pentacene thin-film transistors,” Appl. Phys. Lett. 81(24), p.4643-4645 (2002).

    [45] S. M. Sze, Semiconductor Devices:Physics and technology, 2nd edition, John Wiley & Sons INC., New York, (2001).

    [46] R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmler, O. Shchekin, A. Dodabalapur, “Radio frequency rectifiers based on organic thin-film transtors,” Appl. Phys. Lett. 88, 123502 (2006).

    [47] M. Xu, M. Nakamura, and K. Kudo, “Thickness dependence of mobility in pentacene thin-film transistors,” Thin Solid Films 516, p.2776-2778 (2008).

    [48] W.-Y. Chou and H.-L. Cheng, “An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications,” Adv. Funct. Mater. 14(8), p.811-815 (2004).

    [49] P. Dyreklev, G. Gustafsson, O. Inganäs and H. Stubb, “Polymeric field effect transistors using oriented polymers,” Synth. Met. 57(1), p.4093-4098 (1993).

    [50] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, D. D. C. Bradley, “Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase,” Appl. Phys. Lett. 77(3), p.406-408 (2000).

    [51] S.-P. Yu, Organic thin film transistors with nanogroove gate dielectrics, Master Thesis of Institute of Electro-Optical Science and Engineering, National Cheng Kung University (2009).

    [52] S. H. Kim, J.-D. Park, and K.-D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17, p.4436-4438 (2006).

    [53] Zhibing Ge and Shin-Tson Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).

    [54] L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “ Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).

    [55] Seh-Won Ahn, Ki-Dong Lee, Jin-Sung Kim, Sang Hoon Kim, Joo-Do Park, Sarng-Hoon Lee and Phil-Won Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, p.1874–1877 (2005).

    [56] L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “ 58 nm half-pitch plastic wire-grid polarizer by nanoimprint lithography,” J. Vac. Sci. Technol. B 25(6), p.2654-2657 (2007).

    [57] T.-I. Kim and S.-M. Seo, “The facile fabrication of a wire-grid polarizer by reversal rigiflex printing,” Nanotechnology 23, 145305 (2009).

    [58] M. Xu, H.P. Urbach, D.K.G. de Boer, and H.J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13(7), p.2303-2320 (2005).

    [59] Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slit arrays,” J. Heat Teansf.-Trans. ASME 130(8), 082404 (2008).

    [60] B. Schnable, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-strip gratings,” Opt. Eng. 38(2), p.220-226 (1999).

    [61] B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, M. Hintermaier, M. T. Gale, and R. Morf, “Grid polarizer for the visible spectral region,” SPIE 2213, p.288-296 (1994).

    [62] J. Wang, X. Deng, P. Sciortino, R. Varghese, A. Nikolov, F. Liu, X. Liu, and L. Chen, “Integrated nano-optic devices based on immersion nano-gratings made by imprint lithography and nano-trench-filling technology,” Proc. SPIE 5931, 59310C (2005).

    [63] X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), p.4407-4412 (2003).

    下載圖示 校內:2010-12-11公開
    校外:2010-12-11公開
    QR CODE