簡易檢索 / 詳目顯示

研究生: 廖彥鳴
Liao, Yen-Ming
論文名稱: 軟材料之機械性質測試與其在半導體製程真空設備、生醫量測及軟板傳輸之應用
Mechanical Properties Characterization of Soft Materials for Semiconductor Processing Equipments, Biomedical Measurements and Roll to Roll Transportations
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 108
中文關鍵詞: polyimide (PI)micro pillar arrays (MPA)O-ring rubberroll to roll(R2R)材料測試有限元素分析polydimethylsiloxane (PDMS)
外文關鍵詞: finite element analysis (FEA), O-ring rubber, roll to roll (R2R), polyimide (PI)., polydimethylsiloxane (PDMS), micro pillar arrays (MPA), mechanical characterization
相關次數: 點閱:161下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軟材料具備低彈性模數、高延展性、高可撓性與高生物匹配性,被廣泛應用於半導體製程、微機電、生物醫學以及軟性電子元件等領域,然其性質相對複雜,在應用上必須更全面考慮其材料行為。本文介紹三種軟材料之典型應用,以塊材、微柱以及薄膜等幾何,分別應用於半導體製程設備、生醫量測以及roll to roll軟板傳輸之領域。對此三類材料進行機械性質測試,測試之結果將可做為材料應用之參考,並可配合有限元素分析,進行最佳化設計、理論修正與設計改良。本文針對半導體設備閥門密封元件:O-ring rubber進行機械性質測試,並就其使用週期、溫度效應、預壓及預熱處理效應進行探討,測試之結果,將可應用於閥門元件失效分析與最佳化設計之參數依據。在應用於生醫量測領域之微柱結構,本文以polydimethylsiloxane (PDMS)材料進行機械性質測試,並配合有限元素分析,提出黏彈性短樑細胞力量測模型,修正現行micro pillar arrays使用之懸臂樑模型之缺失。對於薄膜材料之roll to roll軟板傳輸領域,其失效之機制是以操作張力、機件公差以及材料性質三者相互影響而成,本文以roll to roll軟板傳輸之polyimide (PI)薄膜進行機械性質測試,並探討偏位與偏轉之效應,測試之結果用以建立PI薄膜傳輸之有限元素模型,解決軟板傳輸時因公差所造成之破壞。軟材料測試之結果,提供應用材料時之參考依據;所用之測試方法以及力學模型,亦能應用於其他類似之材料;對於測試方法之研究以及材料測試之經驗,將可作為新式測試系統發展之基礎。

    Soft materials have been widely used in semiconductor, MEMS, biomedicine and flexible electronic device due to low elastic modulus, high malleability, high flexibility and high biocompatibility. However, the mechanical behaviors of soft material are relatively complex and have to carefully consider in different applications. In this thesis, the mechanical characterization of soft material in three different kinds of samples was studied, bulks, micro pillars and thin films, which were used in semiconductor processing equipments, biomedical measurements and roll to roll transportations respectively. The characterization results were compared with finite element analysis and then used in design optimization, model modification and improvement. In the first case, the thesis focused on O-ring rubber which was used in semiconductor processing equipments. The effects of live time, temperature, pre-load and pre-thermal processing was studied for optimization design of vacuum valve. Second, the macro and micro scale material characterization of PDMS micro pillar for biologically application was done and compare the result with FEM models. Moreover, these material properties of PDMS were used to develop a more accurate conversion model for cellular force measurement. Third, the mechanical behavior of polyimide (PI) thin film for roll to roll transportations was studied. Because operation tension force, tolerance and mechanical behavior plays important roles in the failure mechanism of roll to roll, the mechanical test of shift and rotating has been done in this research and the result was used to develop the FEM model. The analysis of failure mechanism could be used to improve the performance of equipments. The result of the soft material characterization can be use in various application, also the method of experiment and the mechanical model can be apply to other similar materials. The development of next generation test system will base on this research.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 符號說明 XIII 第一章 緒論 1 1.1 軟材料之機械性質測試 1 1.2 典型軟材料於工程上之應用 2 1.3 研究目標 3 1.4 本文架構 4 第二章 背景介紹 5 2.1 O-Ring Rubber之背景介紹 5 2.2 PDMS Micro Pillar Arrays之背景介紹 8 2.3 軟板傳輸材料Polyimide之背景介紹 15 2.4 軟材料之機械性質 19 2.5 標準測試 26 2.6 本章結論 31 第三章 測試系統 33 3.1 奈米壓痕系統 33 3.2 單軸拉伸測試系統 36 3.3 自製之測試系統 38 3.4 本章結論 44 第四章 O-Ring Rubber之材料機械性質測試及其應用 45 4.1 常溫測試 47 4.2 環境溫度之影響 50 4.3 預壓與預熱處理之影響 52 4.4 拉伸測試之組成律建立 54 4.5 O-Ring Rubber材料測試之應用 56 4.6 本章結論 59 第五章 PDMS Micro Pillar Arrays之材料機械性質測試及其應用 61 5.1 巨觀材料測試 62 5.2 微觀材料測試 68 5.3 Micro Pillar Bending實驗 69 5.4 黏彈性模型於細胞力量測之應用 74 5.5 本章結論 77 第六章 軟板傳輸材料Polyimide之材料機械性質測試及其應用 79 6.1 單軸拉伸測試 80 6.2 偏位拉伸測試 81 6.3 偏轉角度拉伸測試 83 6.4 PI料捲測試之應用與有限元素分析 88 6.5本章結論 95 第七章 實驗結果討論 97 7.1 各測試方法之相關性 97 7.2 環境因素效應之影響 98 7.3 微觀尺度應用之確認 99 7.4 偏擺效應之影響 99 7.5 材料機械性質測試之應用 100 第八章 結論與未來展望 101 8.1 結論 101 8.2 本文貢獻 103 8.3 未來展望 104 參考文獻 105

    [1]M. Morton, “Rubber Technology,” American Chemical Society, 2 Edition, 1974.
    [2]程家駒、許兆年、彭健雄,工程材料學,雲陽出版社,1985。
    [3]A. K. Bhowmick, J. Heslop, and J. R. White, “Photodegradation of Thermoplastic Elastomeric Rubber–Polyethylene Blends,” Journal of Applied Polymer Science, Vol.86, pp.2393-2402, 2002.
    [4]顏宏益,應用奈米壓痕技術於塊狀與薄膜材料之機械性質檢測與分析,國立成功大學機械工程學系碩士論文,2007。
    [5]顏嘉良、陳延彰、陳國聲、陳元方,“ O-Ring Rubber 失效分析與最佳化分析”,第三十屆中華民國力學學會暨全國力學會議,2006。
    [6]A. K. Harris, P. Wild, and D. Stopak, “Silicone Rubber Substrata: A New Wrinkle in the Study of Cell Locomotion,” Science, Vol.208 No.4440, pp.177-179, 1980.
    [7]M. Dembo, and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts,” Biophysical Journal, Vol.76 No.4, pp.2307-2316, 1999.
    [8]J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells lying on a bed of microneedles: an approach to isolate mechanical force,” Proceedings of the National Academy of Sciences of the United States of America, Vol.100 No.4, pp.1484-1489, 2003.
    [9]林奕寬,三維微結構製程技術研究,國立成功大學機械工程研究所碩士論文,2004。
    [10]Y. Zhao, and X. Zhang, “Adaptation of Flexible Polymer Fabrication to Cellular Mechanics Study,” Applied Physics Letters, Vol.87 No.14, pp.144101, 2005.
    [11]O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Siberzan, and B. Ladoux, “Force Mapping in Epithelial cell Migration,” Proceedings of the National Academy of Sciences of United States of America, Vol.102 No.7, pp.2390-2395, 2005.
    [12]A. Saez, A. Buguin, P. Silberzan, and B. Ladoux, “Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?” Biophysical Journal, Vol.105, pp.L52-L54, 2005.
    [13]K. Morishima, Y. Tanaka, M. Ebara, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, and T. Kitamori, “Demonstration of a bio-microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars,” Sensors and Actuators, B Vol.119, pp.345-350, 2006.
    [14]Y. Zhao, and X. Zhang, “Cellular mechanics study in cardiac myocytes using PDMS pillars array”, Sensors and Actuators , A Vol.125 pp.398–404, 2006.
    [15]E. Delamarche, H. Schmid, B. Michel, and H. Biebuyck, “Stability of Molded Polydimethylsiloxane Microstructures,” Advanced Materials, Vol.9, pp.741-746, 1997.
    [16]C. Y. Hui, A. Jagota, Y. Y. Lin, and E. J. Kramer, “Constraints on Microcontact Printing Imposed by Stamp Deformation,” Langmuir Vol.18, pp.1394-1407, 2002.
    [17]S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proceedings of the National Academy of Sciences of United States of America, vol.101, pp.12428-12433, 2004.
    [18]T.-W. Lee, O. Mitrofanov, and J. W. P. Hsu, “Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio,” Advanced Functional Materials, Vol.15, pp.1683-1688, 2005.
    [19]P. Roca-Cusachs, F. Rico, E. Martinez, J. Toset, R. Farre, and D. Navajas, “Stability of Microfabricated High Aspect Ratio Structures in Poly(dimethylsiloxane),” Langmuir, Vol.21, pp.5542-5548, 2005.
    [20]Y. Xiang, and D. A. LaVan, “Analysis of soft cantilevers as force transducers,” Applied Physics Letters, Vol.90, pp.133901, 2007.
    [21]R. Wathen, “Characterizing the Influence of Paper Structure on Web Break”, Licentiate Thesis, Dept. Forest Product Technology, Helsinki University of Technology, 2003.
    [22]D. Roisum, “The Mechanics of Rollers,” TAPPI, 1996.
    [23]A. P. Boresi, and K. P. Chong, “Elasticity in Engineering Mechanics (2nd Edition),” John Wiley & Sons, INC., 2000.
    [24]K. Bellamy, G. Limbert, Mark G. Waters, and J. Middleton, “An Elastomeric Material for Facial Prostheses:Synthesis, Experimental and Numerical Testing Aspects,” Biomaterials, Vol.24, pp.5061-5066, 2003.
    [25]O. H. Yeoh, “Some Forms of the Strain Energy Function for Rubber,” Rubber Chemistry and Technology, Vol.66, pp.754–771, 1993.
    [26]W. N. Findley, J. S. Lai, and K. Onaran, “Creep And Relaxation of Nonlinear Viscoelastic Materials,” Dover, 1989.
    [27]R.M. Christensen, “Theory of Viscoelasticity (An Introduction),” Academic Press,1982.
    [28]J. Vernon, “Introduction to Engineering Materials (3rd Edition),” MacMillan press, 1993.
    [29]J. M. Gere, “Mechanics of Materials (5th Edition),” Brooks/Cole, 2001.
    [30]N. E. Dowling, “Mechanical Behavior of Materials (2nd Edition),” Prentice Hall International, 1999.
    [31]J. F. V. Vincent, “Biomechanics-Materials: A Practical Approach,” Oxford University Press, 1992.
    [32]K. P. Menard, “Dynamic Mechanical Analysis (A Practical Introduction)”, CRC Press, 1999.
    [33]G. M. Odegard, T.S. Gates, and H.M. Herring, “Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation,” Society for Experimental Mechanics, 2005.
    [34]Hysitron Incorporated, “TriboIndenter® Users Manual”, 2001.
    [35]I. N. Sneddon, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile,” International Journal of Science Engineering, Vol.3, 47-57, 1965.
    [36]W. C. Oliver, and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol.7, pp.1564-1583, 1992.
    [37]許瑞峰,微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用,國立成功大學機械工程學系碩士論文,2003。
    [38]K. L. Johnson, ”Contact Mechanics“, Cambridge University Press, 1985.
    [39]廖彥鳴、顏宏益、王凡家、陳國聲,“化學機械研磨墊之機械性質測試”, 第二十三屆中國機械工程學會全國學術研討會,2006。
    [40]M. Gad-el-Hak, “The MEMS Handbook,” CRC Press, 2002.
    [41]L. Tong, and J. R. White, “Photo-oxidation of thermoplastics in bending and in uniaxial compression,” Polymer Degradation and Stability, Vol.53, pp.381-396, 1996.

    下載圖示 校內:2011-08-06公開
    校外:2011-08-06公開
    QR CODE