簡易檢索 / 詳目顯示

研究生: 陳繹帆
Chen, Yi-Fan
論文名稱: 利用低溫掃描熱微影繪製金奈米顆粒圖形之研究
Investigations of Au Nanoparticle Patternings via the Low Temperature Scanning Thermal Lithography
指導教授: 陳引幹
Chen, In-Gann
共同指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 88
中文關鍵詞: 高能物質奈米顆粒掃描式熱微影
外文關鍵詞: Energetics, Nanoparticle, Scanning thermal lithography
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於花費與製程溫度考量,利用金屬奈米顆粒懸浮液製作導電電路與接點受到相當的矚目。本研究中,利用金奈米顆粒懸浮液作為金屬墨水進行掃描式熱微影。掃描探針顯微鏡裝載上微米尺寸熱探針,利用其熱誘發反應達到微影目的。此外,藉由添加高能物質過氧化二苯甲醯 (Benzoyl Peroxide, BPO)為熱輔助劑,提供額外的熱能,促進金奈米顆粒保護劑脫附,降低金奈米顆粒燒結所需的溫度。經添加過BPO的金奈米顆粒懸浮液,經旋轉塗佈於Polyimide (Kapton)基板形成一均勻薄膜,薄膜經恆溫熱處理後,會造成保護劑脫附和金奈米顆粒熔融燒結,實驗中,有效造成金奈米顆粒熔融燒結的最低恆溫熱處理溫度為120oC。利用定點熱分析,觀察金奈米顆粒微觀熱性質,發現隨BPO添加量增加,金奈米顆粒產生熔融燒結熱探針誘發溫度有往低溫位移的趨勢。使用添加BPO的金奈米顆粒懸浮液,經旋轉塗佈成一薄膜,在此薄膜上進行熱微影,利用熱探針與BPO自發裂解所提供的熱促使金奈米顆粒熔融燒結。當進行掃描熱微影時,使用微米尺寸的Walloston熱探針,溫度分別為300oC、350oC和400oC,掃描速率固定為1μm/s,使熱探針掃描區域的金奈米顆粒熔融燒結,建構出微米等級的金線熱微影圖形,最細線寬可達1.5μm。

    Fabrications of electronic circuits and interconnects from metallic nanoparticle suspensions have attracted significant attentions in recent years under the considerations of the cost-effective fabrication processes and more-importantly the reduction of processing temperatures. In this research work, the gold nanoparticle suspensions were utilized as the metallic inks for the investigations of the scanning thermal lithography. A micro-scaled thermal probe was equipped with a scanning probe microscope to achieve the lithography of thermally-induced pattering mechanism. Moreover, an energetic reagent, benzoyl peroxide (BPO), was introduced to provide additional joule heat and consequently to reduce the required sintering temperatures. BPO was mixed with gold nanoparticle suspension. Spin-coated thin films of this suspension were sintered to encourage the surfactant desorption and nanoparticle sintering.
    In the localized thermal analyses, the temperatures of thermal decompositions of the nanoparticle surfactants were found decreased with the BPO loadings. Isothermal treatments of these nanoparticles at the various temperatures revealed the significant reduction as high as 120oC in the minimum temperatures that were required for the effective sintering of gold nanoparticles. Scanning thermal lithography was also carried out using the micro-scaled thermal probe. In the present of BPO reagent, the thermal lithography of gold patterns was performed and investigated at the relatively low temperature of 300oC ~ 400oC. Desired gold patterns with line width as small as 1.5 μm was successfully fabricated.

    中文摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 基礎理論與文獻 3 2.1 金奈米粒子的發展歷史與應用 3 2.2過氧化二苯甲醯(Benzoyl peroxide, BPO) 8 2.3 Micro-thermal analysis & Nano-thermal analysis熱分析原理 11 2.3.1 第一代系統micro-TATM 11 2.3.2 第二代系統 Nano-TATM 13 2.3.3 定點熱分析(Localized thermal analysis)與熱掃描式顯微鏡(Scanning Thermal Microscope) 15 2.4 掃描探針微影術 (Scanning probe lithography, SPL) 21 2.4.1 偏壓微影 (Anodization nanolithography) 21 2.4.2 沾筆微影(Dip-pen nanolithography) 21 2.4.3熱微影(Scanning thermal lithography) 22 第三章 實驗流程與儀器設備 25 3.1 實驗材料與儀器設備 25 3.1.1 奈米金粉末 25 3.1.2 實驗儀器設備 25 3.1.2.1 示差掃描熱量計(Differential Scanning Calorimetry, DSC) 25 3.1.2.2熱重分析儀TGA 26 3.1.2.3 掃描探針顯微鏡(Scanning probe microscope , SPM) 26 3.1.2.4 微米熱分析儀(Micro-thermal analyzer) 27 3.1.2.5 四點探針 Four-probe 27 3.1.2.6 高溫爐 28 3.2實驗流程 32 3.2.1 DSC量測 32 3.2.2 TGA量測 32 3.2.3 原子力顯微鏡觀測 32 3.2.4微米熱分析儀(Micro-thermal analyzer) 33 3.2.4.1定點熱分析(Localized thermal analysis) 33 3.2.4.2掃描式熱微影(Scanning Thermal Lithography) 34 3.2.5 金薄膜電性量測 35 3.2.5.1 膜厚量測方法 35 第四章 結果與討論 39 4.1金奈米顆粒與BPO性質探討 39 4.1.1 利用DSC觀察奈米金顆粒性質 39 4.1.2 利用TGA觀察奈米金顆粒性質 39 4.1.3 利用DSC觀察過氧化二苯甲醯(BPO)性質 40 4.2 利用micro-thermal analyzer分析奈米金顆粒熱性質 44 4.3 添加BPO的奈米金懸浮液經燒結形成金薄膜的性質 53 4.3.1 金薄膜表面形態的觀察 53 4.3.2 金薄膜電性的量測 56 4.4 利用熱微影(Scanning Thermal Lithography) 技術於奈米金薄膜作圖 68 第五章 結論 81 第六章 參考文獻 83 表目錄 表.2.1 各種不同的過氧化物利用示差掃描熱量計所量測的熱裂解釋放熱能表11 10 表4.1 不同熱探針微影溫度與BPO添加量的繪製圖形比較表 80 表4.2 掃描式熱微影OM形貌比較圖 80 圖目錄 圖 2.1.1 Brust-Schiffrin 方法合成金奈米粒子的反應示意圖23 6 圖 2.1.2利用保護劑取代反應製備功能化金奈米粒子的反應示意圖 6 圖 2.1.3 Rotello 等人於 2002 年發表功能化金奈米粒子利用分子間氫鍵進行辨識與組裝的研究示意圖22:(a)POSS(polyoligosilsequioxane)奈米粒子可進行三個區域的氫鍵辨識能力。(b)POSS-DAP(diaminopyridine)可攜帶功能化金奈米粒子進行晶體堆疊。 7 圖 2.1.4 Liu 等人於2002年發表,結合分子自組裝(self-assembly)技巧製備二維金奈米粒子陣列薄膜的流程示意圖24。 7 圖2.2.1過氧化二苯甲醯的裂解反應機構,此熱裂解為自發反應13 9 圖2.2.2不同重量百分比的過氧化二苯甲醯產生熱裂解反應的示差掃描熱量計(DSC)圖13 9 (e) PMMA 定點熱分析圖 17 圖2.3.1 (a) (b) (c) (d) 熱探針定點熱分析過程,(e) PMMA定點熱分析(LTA)結果 17 圖2.3.2第一代微米熱分析儀控制迴路示意圖(a) 定點熱分析 (b) 熱掃描式顯微鏡(SThM) 18 圖2.3.3 nano-TATM控制迴路示意圖 19 圖2.3.4 Micro-thermal Analysis: 觀測樣品產生吸熱現象功率訊號示意圖 20 圖2.3.5 Micro-thermal Analysis: 觀測樣品產生放熱現象的功率訊號示意圖 20 圖2.4.1 偏壓微影的設置圖 23 圖2.4.2 沾筆微影 23 圖2.4.3熱微影 24 圖3.1.1 東華大學宋振銘教授實驗室使用Brust-Schiffrin 兩相合成法製備所得的奈米金顆粒TEM影像(由國立東華大學宋振銘教授實驗室提供) 29 圖3.1.2 Heat flux DSC示意圖 (Haines, 1995) 30 圖3.1.3 熱重分析儀中可分為懸吊式、水平式與上置式三種類型 30 圖3.1.4 四點探針 31 圖3.2.1 Au NPs/BPO=2奈米金薄膜Z-height訊號圖, 綠線為熱探針高度訊號,藍線為高度對溫度做一次微分 37 圖3.2.2 Au NPs/BPO=2奈米金薄膜Delta power訊號圖,棕色線為熱探針功率差的訊號,粉紅線為功率差對溫度的一次微分。 37 圖3.2.3 實驗流程圖 38 圖4.1.1 實驗所使用不同批奈米金粉末的DSC結果比較,升溫速度10oC/min,由室溫加熱至350oC 42 圖4.1.2 Au NPs的DCS圖結果,升溫速度10oC/min,由室溫加熱至350oC,並等其降至室溫後在以相同升溫速率進行加熱至350oC 42 圖4.1.3 奈米金粉末的TGA圖,將奈米金粉末置入TGA,升溫速度為10oC/min,由室溫加熱至350oC 43 圖4.1.4 Benzoyl Peroxide粉末的DSC曲線圖,升溫速率為4oC/min,由室溫加熱至180oC。 43 圖4.2.1無添加BPO的奈米金懸浮液Au NPs薄膜的定點熱分析,棕色曲線為熱探針Delta power 訊號,與其對溫度微分,左下縮小圖,為Z-height訊號,與其對溫度微分結果 48 圖4.2.2 Au NPs/BPO重量比128奈米金顆粒薄膜定點熱分析圖,棕色曲線為熱探針Delta power 訊號,粉紅色曲線為delta power對溫度微分結果,左下縮小圖,為Z-height訊號和其對溫度微分結果 48 圖4.2.3 Au NPs/BPO重量比64奈米金顆粒薄膜定點熱分析圖,棕色曲線為熱探針Delta power 訊號,粉紅色曲線為delta power對溫度微分結果。左下縮小圖,為Z-height訊號和對溫度其微分結果 49 圖4.2.4 Au NPs/BPO重量比32奈米金顆粒薄膜定點熱分析圖,棕色曲線為熱探針Delta power 訊號,粉紅色曲線為delta power對溫度微分結果。左下縮小圖,為Z-height訊號和對溫度其微分結果 49 圖4.2.5 Au NPs/BPO重量比16奈米金顆粒薄膜定點熱分析圖,棕色曲線為熱探針Delta power 訊號,粉紅色曲線為delta power對溫度微分結果。左下縮小圖,為Z-height訊號和對溫度其微分結果 50 圖4.2.6 Au NPs/BPO重量比8奈米金顆粒薄膜定點熱分析圖,棕色曲線為熱探針Delta power 訊號,粉紅色曲線為delta power對溫度微分結果。左下縮小圖,為Z-height訊號和對溫度其微分結果 50 圖4.2.7 Au NPs/BPO重量比4奈米金顆粒薄膜定點熱分析圖,棕色曲線為熱探針Delta power 訊號,粉紅色曲線為delta power對溫度微分結果。左下縮小圖,為Z-height訊號和對溫度其微分結果 51 圖4.2.8 Au NPs/BPO重量比2奈米金顆粒薄膜定點熱分析圖,棕色曲線為熱探針Delta power 訊號,粉紅色曲線為delta power對溫度微分結果。左下縮小圖,為Z-height訊號和對溫度其微分結果 51 圖4.2.9 不同BPO/Au NPs重量比對熱探針誘發奈米金薄膜產生熔融溫度的趨勢圖 52 圖4.3.1 Au NPs/BPO重量比為128的懸浮液經旋轉塗佈於Kapton基板上,置入高溫爐經持溫加熱30分鐘後的金薄膜表面形貌(a)120oC(b)150oC(c)180oC(d)210oC(e)240oC 58 圖4.3.2 Au NPs/BPO重量比為64的懸浮液經旋轉塗佈於Kapton基板上,置入高溫爐經持溫加熱30分鐘後的金薄膜表面形貌(a)120oC(b)150oC(c)180oC(d)210oC(e)240oC 59 圖4.3.3 Au NPs/BPO重量比為32的懸浮液經旋轉塗佈於Kapton基板上,置入高溫爐經持溫加熱30分鐘後的金薄膜表面形貌(a)120oC(b)150oC(c)180oC(d)210oC(e)240oC 60 圖4.3.4 Au NPs/BPO重量比為16的懸浮液經旋轉塗佈於Kapton基板上,置入高溫爐經持溫加熱30分鐘後的金薄膜表面形貌(a)120oC(b)150oC(c)180oC(d)210oC(e)240oC 61 圖4.3.5 Au NPs/BPO重量比為8的懸浮液經旋轉塗佈於Kapton基板上,置入高溫爐經持溫加熱30分鐘後的金薄膜表面形貌(a)80oC(b)120oC(c)160oC(d)200oC(e)240oC 62 圖4.3.6 Au NPs/BPO重量比為4的懸浮液經旋轉塗佈於Kapton基板上,置入高溫爐經持溫加熱30分鐘後的金薄膜表面形貌(a)80oC(b)120oC(c)160oC(d)200oC(e)240oC 63 圖4.3.7 Au NPs/BPO重量比為2的懸浮液經旋轉塗佈於Kapton基板上,置入高溫爐經持溫加熱30分鐘後的金薄膜表面形貌(a)80oC(b)120oC(c)160oC(d)200oC(e)240oC 64 圖4.3.8 Au NPs/BPO重量比為1的懸浮液經旋轉塗佈於Kapton基板上,置入高溫爐經持溫加熱30分鐘後的金薄膜表面形貌(a)80oC(b)120oC(c)160oC(d)200oC(e)240oC 65 圖4.3.9不同Au NPs/BPO重量比與溫度對金薄膜表面粗糙度的影響 圖4.3.10不同Au NPs/BPO重量比與溫度對金薄膜表面粗糙度的影響 66 圖4.3.11不同Au NPs/BPO重量比與溫度對金薄膜片電阻的影響比較 67 圖4.3.12不同Au NPs/BPO重量比與溫度對金薄膜電阻率的影響比較 67 圖4.4.1熱微影示意圖 71 圖4.4.2 利用熱探針於Kapton基板上的奈米金薄膜進行熱微影繪製兩條直線狀圖形的AFM影像 71 圖4.4.3利用熱探針對熱微影(SThL)區域做thermal mapping的影像圖 72 圖4.4.4 OM圖像中對照thermal mapping圖,可看出經過熱探針所畫過區域呈現具金屬光澤的圖形 72 圖4.4.5 利用300oC的Wollaston熱探針在Au NPs/BPO重量比為32的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的反射式與穿透式(左上縮小圖)OM影像 73 圖4.4.6 利用300oC的Wollaston熱探針在Au NPs/BPO重量比為32的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的AFM 3D影像 73 圖4.4.7 利用350oC的Wollaston熱探針在Au NPs/BPO重量比為32的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的反射式與穿透式(左上縮小圖)OM影像 74 圖4.4.8 利用350oC的Wollaston熱探針在Au NPs/BPO重量比為32的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的AFM 3D影像 74 圖4.4.9 利用400oC的Wollaston熱探針在Au NPs/BPO重量比為32的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的的反射式與穿透式(左上縮小圖)OM影像 75 圖4.4.10利用400oC的Wollaston熱探針在Au NPs/BPO重量比為32的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的AFM 3D影像 75 圖4.4.11 利用350oC的Wollaston熱探針在Au NPs/BPO重量比為32的奈米金薄膜上進行熱微影所繪製蚊香狀圖形的反射式與穿透式(右上縮小圖)OM影像 76 圖4.4.12 利用400oC的Wollaston熱探針在Au NPs/BPO重量比為32的奈米金薄膜上進行熱微影所繪製蚊香狀圖形的反射式與穿透式(右上縮小圖)OM影像。 76 圖4.4.13 利用300oC的Wollaston熱探針在Au NPs/BPO重量比為16的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的反射式與穿透式(左上縮小圖)OM影像 77 圖4.4.14 利用350oC的Wollaston熱探針在Au NPs/BPO重量比為16的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的反射式與穿透式(右上縮小圖)OM影像 77 圖4.4.15 利用400oC的Wollaston熱探針在Au NPs/BPO重量比為16的奈米金薄膜上進行熱微影所繪製九宮格狀圖形的反射式與穿透式(右上縮小圖)OM影............................................................................................. 78 圖4.4.16 利用350oC的Wollaston熱探針在Au NPs/BPO重量比為16的奈米金薄膜上進行熱微影所繪製蚊香狀圖形的反射式與穿透式(右上縮小圖)OM影像 79 圖4.4.17 利用400oC的Wollaston熱探針在Au NPs/BPO重量比為16的奈米金薄膜上進行熱微影所繪製蚊香狀圖形的反射式與穿透式(右上縮小圖)OM影像 79

    1. Cui, W. J.; Lu, W. S.; Zhang, Y. K.; Lin, G. H.; Wei, T. X.; Jiang, L., Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology. Colloid Surf. A-Physicochem. Eng. Asp. 2010, 358 (1-3), 35-41.
    2. Ko, S. H.; Pan, H.; Grigoropoulos, C. P.; Luscombe, C. K.; Frechet, J. M. J.; Poulikakos, D., All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 2007, 18 (34).
    3. van Osch, T. H. J.; Perelaer, J.; de Laat, A. W. M.; Schubert, U. S., Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Advanced Materials 2008, 20 (2), 343-+.
    4. Zhao, N.; Chiesa, M.; Sirringhausa, H.; Li, Y. N.; Wu, Y. L., Self-aligned inkjet printing of highly conducting gold electrodes with submicron resolution. Journal of Applied Physics 2007, 101 (6).
    5. Retsch, M.; Dostert, K. H.; Nett, S. K.; Vogel, N.; Gutmann, J. S.; Jonas, U., Template-free structuring of colloidal hetero-monolayers by inkjet printing and particle floating. Soft Matter 2010, 6 (11), 2403-2412.
    6. Bidoki, S. M.; Nouri, J.; Heidari, A. A., Inkjet deposited circuit components. J. Micromech. Microeng. 2010, 20 (5).
    7. Cho, J.; Shin, K. H.; Jang, J., Micropatterning of conducting polymer tracks on plasma treated flexible substrate using vapor phase polymerization-mediated inkjet printing. Synth. Met. 2010, 160 (9-10), 1119-1125.
    8. Stringer, J.; Derby, B., Formation and Stability of Lines Produced by Inkjet Printing. Langmuir 2010, 26 (12), 10365-10372.
    9. Lee, D. J.; Oh, J. H.; Bae, H. S., Crack formation and substrate effects on electrical resistivity of inkjet-printed Ag lines. Mater. Lett. 2010, 64 (9), 1069-1072.
    10. Buffat, P.; Borel, J. P., Size effect on the melting temperature of gold particles. Physical Review A 1976, 13 (6), 2287.
    11. Duh, Y.-S.; Wu, X. H.; Kao, C.-S., Hazard ratings for organic peroxides. Process Safety Progress 2008, 27 (2), 89-99.
    12. Li, X. R.; Koseki, H., Thermal decomposition kinetic of reactive solids based on isothermal calorimetry measurements. J Therm Anal Calorim 2006, 85 (3), 637-642.
    13. Lu, K. T.; Chen, T. C.; Hu, K. H., Investigation of the decomposition reaction and dust explosion characteristics of crystalline benzoyl peroxides. Journal of Hazardous Materials 2009, 161 (1), 246-256.
    14. Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A., Chemistry and properties of nanocrystals of different shapes. Chemical Reviews 2005, 105 (4), 1025-1102.
    15. Daniel, M. C.; Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews 2004, 104 (1), 293-346.
    16. Goia, D. V.; Matijevic, E., Preparation of monodispersed metal particles. New Journal of Chemistry 1998, 22 (11), 1203-1215.
    17. Kakkar, A. K., Nano-organometallics: Heterogenizing homogeneous catalysts via thin film methodology. Chemical Reviews 2002, 102 (10), 3579-3587.
    18. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews 2005, 105, 1103-1169.
    19. Turkeviche, J.; Stevenson, P. C.; Hillier, J., A Strdy of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discussions of the Faraday Society 1951, 11, 55-75.
    20. Siebrands, T.; Giersig, M.; Mulvaney, P.; Fischer, C. H., Steric Exclusion Chromatography of Nanometer-sized Gold Particles. Langmuir 1993, 9 (9), 2297-2300.
    21. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of Thiol-derivatizes Gold Nanoparticles in A 2-phase Liquid-liquid System. J. Chem. Soc.-Chem. Commun. 1994, (7), 801-802.
    22. Carroll, J. B.; Frankamp, B. L.; Rotello, V. M., Self-assembly of gold nanoparticles through tandem hydrogen bonding and polyoligosilsequioxane (POSS)-POSS recognition processes. Chem. Commun. 2002, (17), 1892-1893.
    23. Sun, L.; Crooks, R. M.; Chechik, V., Preparation of polycyclodextrin hollow spheres by templating gold nanoparticles. Chem. Commun. 2001, (4), 359-360.
    24. Liu, S. T.; Zhu, T.; Hu, R. S.; Liu, Z. F., Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array. Phys. Chem. Chem. Phys. 2002, 4 (24), 6059-6062.
    25. Moon, I.; Androsch, R.; Chen, W.; Wunderlich, B., Principles of Micro-Thermal analysis and Its Application to The Study of Macromolecules. J Therm Anal Calorim 2000, 59, 187-203.
    26. Abad, M. J.; Ares, A.; Barral, L.; Cano, J.; Diez, F. J.; Lopez, J.; Ramirez, C., Characterization of biaxially oriented polypropylene films by atomic force microscopy and microthermal analysis. Journal of Applied Polymer Science 2002, 85 (7), 1553-1561.
    27. Assche, G. V.; Mele, B. V., Interphase Formation in Model composites Studied by Micro-Thermal Analysis. Polymer 2002 43, 4605-4610.
    28. Gorbunov, V. V.; Fuchigami, N.; Hazel, J. L.; Tsukruk, V. V., Probing Surface Microthermal Properties by Scanning Thermal Microscopy. Langmuir 1999, 15, 8340-8343.
    29. Grossetete, T.; Gonon, L.; Verney, V., Submicrometric characterization of the heterogeneous photooxidation of polypropylene by microthermal analysis. Polym. Degrad. Stabil. 2002, 78 (2), 203-210.
    30. Hammiche, A.; Bozec, L.; Conroy, M.; Pollock, H. M.; Mills, G.; Weaver, J. M. R.; Price, D. M.; Reading, M.; Hourston, D. J.; Song, M., Highly localized thermal, mechanical, and spectroscopic characterization of polymers using miniaturized thermal probes. Journal of Vacuum Science & Technology B 2000, 18 (3), 1322-1332.
    31. Keating, M. Y., Fast Heating in μ-Thermal Analysis J Therm Anal Calorim 2005, 82, 559-564.
    32. Mallarino, S.; Chailan, J. F.; Vernet, J. L., Interphase Investigation in Glass Fibre Composites by Micro-Thermal Analysis. Composites: Part A 2005, 36, 1300-1306.
    33. Oulevey, F.; Burnham, N. A.; Gremaud, G.; Kulik, A. J.; Pollock, H. M.; Hammiche, A.; Reading, M.; Song, M.; Hourston, D. J., Dynamic Mechanical Analysis at The Submicron Scale. Polymer 2000, 41, 3087-3092.
    34. Price, D. M.; Reading, M.; Hammiche, A.; Pollock, H. M.; Branch, M. G., Localised Thermal Analysis of a Packaging Film. Thermochimica Acta 1999, 332, 143-149.
    35. Royall, P. G.; Hill, V. L.; Craig, D. Q. M.; Price, D. M.; Reading, M., An investigation into the surface deposition of progesterone on poly (d, I-) lactic acid microspheres using micro-thermal analysis. Pharm. Res. 2001, 18 (3), 294-298.
    36. Royall, P. G.; Kett, V. L.; Andrews, C. S.; Craig, D. Q. M., Identification of crystalline and amorphous regions in low molecular weight materials using microthermal analysis. J. Phys. Chem. B 2001, 105 (29), 7021-7026.
    37. Song, M.; Hourston, D. J.; Grandy, D. B.; Reading, M., An Application of Micro-Thermal Analysis to Polymer Blends. Journal of Applied Polymer Science 2000, 81, 2136-2141.
    38. Van Assche, G.; Ghanem, A.; Lhost, O.; Van Mele, B., Through-thickness analysis of the skin layer thickness of multi-layered biaxially-oriented polypropylene films by micro-thermal analysis. Polymer 2005, 46 (18), 7132-7139.
    39. Xie, W.; Liu, J. M.; Lee, C. W. M.; Pan, W. P., The Application of Micro-Thermal Analysis Technique in The Characterization of Polymer Blend. Thermochimica Acta 2001, 367-368, 135-142.
    40. Ye, J.; Hasegawa, T.; Suzuki, A., Microthermal Analysis of the Melting Behavior in Zone-Drawn Isotactic Polypropylene Fibers. Journal of Polymer Science Part B 2004, 42, 3677-3681.
    41. Ye, J.; Hasegawa, T.; Suzuki, A., Evaluation of the Microstructure and Melting Behavior of Drawn Polypropylene Fibers with a Microthermal Analyzer. Journal of Applied Polymer Science 2006, 100, 1306-1311.
    42. Boroumand, F. A.; Hammiche, A.; Hill, G.; Lidzey, D. G., Characterizing Joule heating in polymer light-emitting diodes using a scanning thermal microscope. Advanced Materials 2004, 16 (3), 252-+.
    43. Boroumand, F. A.; Voigt, M.; Lidzey, D. G.; Hammiche, A.; Hill, G., Imaging Joule heating in a conjugated-polymer light-emitting diode using a scanning thermal microscope. Applied Physics Letters 2004, 84 (24), 4890-4892.
    44. Blanco, C.; Lu, S.; Appleyard, S. P.; Rand, B., The Stabilisation of Carbon Fibres Studied by Micro-Thermal Analysis. Carbon 2003, 41, 165-171.
    45. Ye, J.; Kojima, N.; Furuya, K.; Munakata, F.; Okada, A., Micro-Thermal Analysis of Thermal Conductance Distribution in Advanced Silicon Nitrides. J Therm Anal Calorim 2002, 69, 1031-1036.
    46. Botterill, N. W.; Grant, D. M., Novel Micro-Thermal Characterisation of Thin Film NiTi Shape Memory Alloys. Materials Science and Engineering A 2004, 378, 424-428.
    47. Hasegawa, S.; Hamauraa, T.; Furuyama, N.; Horikawa, S.; Kusai, A.; Yonemochi, E.; Terada, K., Uniformity and Physical States of Troglitazone in Solid Dispersions Determined by Electron Probe Microanalysis and Microthermal Analysis. International Journal of Pharmaceutics 2004, 280, 39-46.
    48. Murphy, J. R.; Andrews, C. S.; Craig, D. Q. M., Characterization of the Thermal Properties of Powder Particles Using Microthermal Analysis. Pharm. Res. 2003, 20, 500-507.
    49. Six, K.; Murphy, J.; Weuts, I.; Craig, D. Q. M.; Verreck, G.; Peeters, J.; Brewster, M.; Van den Mooter, G., Identification of phase separation in solid dispersions of itraconazole and Eudragit (R) E100 using microthermal analysis. Pharm. Res. 2003, 20 (1), 135-138.
    50. Yonemochi, E.; Hoshino, T.; Yoshihashi, Y.; Terada, K., Evaluation of the Physical Stability and Local Crystallization of Amorphous Terfenadine Using XRD-DSC and Micro-TA. Thermochimica Acta 2005, 432, 70-75.
    51. 陳隆, In-Situ Thermal Analysis and Scanning Thermal Microscopy of Optoelectronic Polymer Thin Films. 國立成功大學 材料科學及工程學系 碩士論文 中華民國九十八年.
    52. Wouters, D.; Schubert, U. S., Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices. Angewandte Chemie-International Edition 2004, 43 (19), 2480-2495.
    53. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J., Modification of Hydrogen-passivated Silicon by A Scanning Tunneling Microcope Operating in Air. Applied Physics Letters 1990, 56 (20), 2001-2003.
    54. Avouris, P.; Hertel, T.; Martel, R., Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication. Applied Physics Letters 1997, 71 (2), 285-287.
    55. Snow, E. S.; Jernigan, G. G.; Campbell, P. M., The kinetics and mechanism of scanned probe oxidation of Si. Applied Physics Letters 2000, 76 (13), 1782-1784.
    56. Hsu, J. H.; Lai, H. W.; Lin, H. N.; Chuang, C. C.; Huang, J. H., Fabrication of nickel oxide nanostructures by atomic force microscope nano-oxidation and wet etching. Journal of Vacuum Science & Technology B 2003, 21 (6), 2599-2601.
    57. Irmer, B.; Kehrle, M.; Lorenz, H.; Kotthaus, J. P., Fabrication of Ti/TiOx tunneling barriers by tapping mode atomic force microscopy induced local oxidation. Applied Physics Letters 1997, 71 (12), 1733-1735.
    58. Xie, X. N.; Chung, H. J.; Bandyopadhyay, D.; Sharma, A.; Sow, C. H.; Wee, A. T. S., Micro/nanoscopic patterning of polymeric materials by atomic force microscope assisted electrohydrodynamic nanolithography. Journal of Applied Physics 2008, 103 (2).
    59. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., "Dip-pen" nanolithography. Science 1999, 283 (5402), 661-663.
    60. Amro, N. A.; Xu, S.; Liu, G.-y., Patterning Surfaces Using Tip-Directed Displacement and Self-Assembly. Langmuir 2000, 16, 3006-3009.
    61. Cheung, C. L.; Camarero, J. A.; Woods, B. W.; Lin, T. W.; Johnson, J. E.; De Yoreo, J. J., Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. Journal of the American Chemical Society 2003, 125 (23), 6848-6849.
    62. Fang, T. H.; Chang, W. J.; Wu, C. D., Effects of temperature and size on contact behavior of self-assembled alkanethiol cluster for dip-pen nanolithography. Microelectronic Engineering 2008, 85 (1), 223-226.
    63. Hyun, J.; Ahn, S. J.; Lee, W. K.; Chilkoti, A.; Zauscher, S., Molecular recognition-mediated fabrication of protein nanostructures by dip-pen lithography. Nano Letters 2002, 2 (11), 1203-1207.
    64. Kaholek, M.; Lee, W. K.; LaMattina, B.; Caster, K. C.; Zauscher, S., Fabrication of stimulus-responsive nanopatterned polymer brushes by scanning-probe lithography. Nano Letters 2004, 4 (2), 373-376.
    65. Onclin, S.; Ravoo, B. J.; Reinhoudt, D. N., Engineering Silicon Oxide Surfaces Using Self-Assembled Monolayers. Angewandte Chemie International Edition 2005, 44, 6282-6304.
    66. Wilson, D. L.; Martin, R.; Hong, S.; Cronin-Golomb, M.; Mirkin, C. A.; Kaplan, D. L., Surface Organization and Nanopatterning of Collagen by Dip-Pen Nanolithography. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (24), 13660-13664.
    67. Liu, M. Z.; Amro, N. A.; Chow, C. S.; Liu, G. Y., Production of Nanostructures of DNA on Surfaces. Nano Letters 2002, 2 (8), 863-867.
    68. Lim, J.-H.; Ginger, D. S.; Lee, K.-B.; Heo, J.; Nam, J.-M.; Mirkin, C. A., Direct-Write Dip-Pen Nanolithography of Proteins on Modified Silicon Oxide Surfaces. Angewandte Chemie International Edition 2003, 42, 2309-2312.
    69. Nam, J.-M.; Han, S. W.; Lee, K.-B.; Liu, X.; Ratner, M. A.; Mirkin, C. A., Bioactive Protein Nanoarrays on Nickel Oxide Surfaces Formed by Dip-Pen Nanolithography. Angewandte Chemie International Edition 2004, 43, 1246-1249.
    70. Maynor, B. W.; Li, Y.; Liu, J., Au "Ink" for AFM "Dip-Pen" Nanolithography. Langmuir 2001, 17 (9), 2575-2578.
    71. Garno, J. C.; Yang, Y. Y.; Amro, N. A.; Cruchon-Dupeyrat, S.; Chen, S. W.; Liu, G. Y., Precise Positioning of Nanoparticles on Surfaces Using Scanning Probe Lithography. Nano Letters 2003, 3 (3), 389-395.
    72. Zhang, H.; Mirkin, C. A., DPN-Generated Nanostructures Made of Gold, Silver, and Palladium. Chemistry of Materials 2004, 16, 1480-1484.
    73. Bullen, D.; Liu, C., Electrostatically Actuated Dip Pen Nanolithography Probe Arrays. Sensors and Actuators A 2006, 125, 504-511.
    74. Li, Y.; Maynor, B. W.; Liu, J., Electrochemical AFM "Dip-Pen' Nanolithography. Journal of the American Chemical Society 2001, 123 (9), 2105-2106.
    75. Sheehan, P. E.; Whitman, L. J.; King, W. P.; Nelson, B. A., Nanoscale Deposition of Solid Inks Via Thermal Dip Pen Nanolithography. Applied Physics Letters 2004, 85 (9), 1589-1591.
    76. Basu, A. S.; McNamara, S.; Gianchandani, Y. B., Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes. Journal of Vacuum Science & Technology B 2004, 22 (6), 3217-3220.
    77. Dryakhlushin, V. F.; Klimov, A. Y.; Rogov, V. V.; Shashkin, V. I.; Sukhodoev, L. V.; Volgunov, D. G.; Vostokov, N. V., Development of contact scanning probe lithography methods for the fabrication of lateral nano-dimensional elements. Nanotechnology 2000, 11 (3), 188-191.
    78. Hua, Y. M.; Saxena, S.; Clifford, H.; King, W. P., Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip. Journal of Micro-Nanolithography Mems and Moems 2007, 6 (2).
    79. King, W. P.; Saxena, S.; Nelson, B. A.; Weeks, B. L.; Pitchimani, R., Nanoscale Thermal Analysis of an Energetic Material. Nano Letters 2006, 6, 2145-2149.
    80. Lee, D.-W.; Oh, I.-K., Micro/Nano-heater Integrated Cantilevers for Micro/nano-lithography Applications. Microelectronic Engineering 2007, 84, 1041-104

    無法下載圖示 校內:2015-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE