簡易檢索 / 詳目顯示

研究生: 楊馥蓁
Yang, Fu-Chen
論文名稱: Ertapenem 非敏感性陰溝腸桿菌之抗藥性分析
Characterization of Ertapenem-non-Susceptible E. cloacae Isolates from a University in Southern Taiwan
指導教授: 吳俊忠
Wu, Jiunn-Jong
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 87
中文關鍵詞: 陰溝腸桿菌抗藥性
外文關鍵詞: Enterobacter cloacae, Ertapenem
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Carbapenem 類抗生素是目前用於治療產生 AmpC- 和超廣效性 β-lactamases 的腸內菌所感染之病患。因此,carbapenem 類抗生素便成為治療腸內菌之重要的抗生素。Enterobacter cloacae 是非常重要的醫院院內感染之病原菌,由於其天生會產生 AmpC-β-lactamases 之特性,造成 E. cloacae 菌株通常對於廣效性頭孢素類的抗生素具有高度抗藥性存在。本研究目標是探討在成功大學附設醫院的 ertapenem 非敏感性 E. cloacae 臨床菌株之抗藥性分析。本實驗收集 2007 年 355 株不重複之臨床菌株,其中 53 (14.9%) 株對於 ertapenem 具有抗藥性。這 53 株 ertapenem 非敏感性菌株中有 40 (75.5%) 株會表現 SHV-type 超廣效性 β-lactamases,此外 46 株 (86.8%) 會表現 TEM-type β-lactamases。利用脈衝式電泳進行 53 株臨床菌株之分析發現,共可分為 23 種圖譜,其中 35 株可分為 5 種主要的圖譜。萃取 E. cloacae 臨床菌株之外套膜蛋白質分析發現,42 (79.2%) 株 ertapenem 非敏感性 E. cloacae 菌株之外套膜蛋白質表現量並沒有明顯差異。互補菌株之 OmpC 或 OmpF 的表現不會影響其對 ertapenem 的敏感性。加入 efflux pump 抑制劑 carbonyl cyanide m-chlorophenylhydrazone (CCCP) 後,E. cloacae 臨床菌株之 ertapenem 最小抑制濃度下降約 8 到 16 倍 (從 16 μg/ml 下降至 2 μg/ml),然而加入 phenylalanine argine β-naphthylamide (PAβN) 抑制劑後其 MICs 僅有 4 倍之差異。從本實驗中發現,我們收集的菌株中以超廣效性 β-lactamases 酵素的產生與 efflux pump 的活性兩種抗藥機轉同時發生時是造成 E. cloacae 臨床菌株對 ertapenem 敏感性降低的主要原因。

    Carbapenems are most frequent agents used for treating infections caused by AmpC- and extended-spectrum-β-lactamases (ESBLs)-producing Enterobacteriaceae. Therefore, the emergence of carbapenem resistance in Enterobacteriaceae has become a great concern. Enterobacter cloacae, an important nosocomial pathogen, may become resistant to broadspectrum cephalosporins by constitutive expression of its chromosomal AmpC β-lactamase. The aim of this study was to characterize ertapenem-non-susceptible (ETP-NS) E. cloacae isolates in National Cheng Kung University Hospital. The present study demonstrated that 53 of 355 (14.9 %) E. cloacae isolates were ETP-NS in 2007. Among them, 40 (75.5 %) of the ETP-NS E. cloacae isolates had ESBLs, and all were found to produce the SHV-type ESBLs. In addition, 46 (86.8%) isolates had the TEM-type β- lactamases. Twenty-three patterns were pulsed-field gel electrophoresis (PFGE) analysis. Five major patterns dominated for 35 ETP-NS isolates. No discernible change in the expression of outer membrane proteins was found in most (n=42, 79.2%) of strains. Overexpression of OmpC or OmpF in complemented strain had no effect on ertapenem susceptibility. The MICs of ertapenem in the presence of pump inhibitor, carbonyl-cyanide- m-chlorophenylhydrazone (CCCP), had 8 to 16-fold decreased (from 16 to 2 μg/ml). However, the presence of phenylalanine- argine-β-naphthylamide (PAβN) had no significant effect on the result of MIC for most isolates, which reduced less than 4 fold. This study suggests that the decreased susceptibility to ertapenem in E. cloacae in the hospital may arise largely by the production of ESBLs combined with the efflux pump expression in this region.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 緒論 1 一、陰溝腸桿菌簡介 1 二、E. cloacae 造成之疾病 1 三、抗生素使用與治療 1 A.β-lactams 2 A.1. Penicillins 2 A.2. Cephalosporins 3 A.3. Carbapenems 3 A.4. Monobactams 4 A.5. Oxacephems 5 A.6.β-lactamase 抑制劑 (Inhibitors) 5 B. Fluoroquinolones 5 C. Aminoglycosides 6 四、細菌之抗藥機轉 (Antibiotic Resistance Mechanisms) 6 A. 改變抗生素作用的位置 (Alteration of the Target Site) 7 B. 分解抗生素或抑制酵素活性 (Enzymatic Inactivation of Antibiotics) 7 B.1. β-lactam 8 B.1.1. β-lactamases 之分類 8 B.1.2. 超廣效性 β-lactamases (ESBLs) 10 B.1.3. ESBLs 之相關基因 11 B.1.4. ESBL-producing 菌株發生之概況 15 B.1.5. Carbapenemases 15 C. 改變抗生素之通透性 (Antibiotics Permeability) 17 C.1. 降低抗生素在細菌體內累積 (Decreased Accumulation) 17 C.2. 快速並有效的將抗生素送出細菌體外 (Active-Efflux Pumps) 18 五、研究目的 19 材料與方法 20 一、菌株來源、培養及保存 20 二、抗生素敏感性測試 (Susceptibility Tests) 20 A. 最小抑制濃度 (Minimal Inhibitory Concentration, MIC) 之測定 20 B. 紙錠擴散確認法 (Disc Diffusion Confirmatory Tests) 21 C. 雙紙錠協同試驗 (Double-Disc Synergy Test) 22 D. 2-MPA 雙紙錠協同試驗 (2-MPA Double-Disc Synergy Test) 23 E. Modified-Hodge Tests (MHT) 23 三、DNA實驗操作 24 A. 陰溝腸桿菌 E. cloacae 24 A.1. E. cloacae 染色體 DNA 之萃取 24 A.2. E. cloacae 質體 DNA 之萃取 24 A.3. 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 25 B. 大腸桿菌 E. coli 25 B.1. 大腸桿菌質體 DNA 之萃取 25 B.2. 限制酶切割及 DNA 接合反應 (Ligation) 26 B.3. 勝任細胞 (Competent Cells) 的製備 26 B.4. 勝任細胞轉型作用 (Transformation) 26 四、蛋白質實驗操作 27 A. E. cloacae 總蛋白質之萃取 27 B. E. cloacae 外套膜蛋白質 (Outer Membrane Proteins, OMPs) 之萃取 27 C. 蛋白質定量 (Bradford Assay) 28 D. β-Lactamases 酵素活性測試 (β-Lactamases Activity Assay) 28 E. 蛋白質膠體電泳 (SDS-PAGE) 29 五、RNA 實驗操作 29 A. E. cloacae RNA 之萃取 29 B. 北方墨點法 (Northern Blotting) 30 B.1. RNA 之轉漬 (Transfer) 30 B.2. 聚合酶連鎖反應 (PCR) 30 B.3. 探針 (Probes) 的製備 31 B.4. RNA 轉漬膜染色 (Staining) 31 B.5. 雜交作用 (Hybridization) 31 B.6. 清洗和偵測 (Wash and Detection) 32 C. 反轉錄聚合酶連鎖反應 (Reverse Transcriptase PCR, RT-PCR) 32 六、脈衝式電泳分析 (Pulsed-Field Gel Electrophoresis, PFGE) 32 A. E. cloacae 菌株之包埋 33 B. 破菌處理與清洗 33 C. 脈衝式電泳分析 33 D. 圖譜判讀與分析 34 結果 35 一、E. cloacae 之抗生素敏感性測試 (Susceptibility Tests) 35 二、Ertapenem 非敏感性 E. cloacae 之抗藥機制 36 A. β-lactamase 之特性分析 36 B. Klebsiella pneumoniae carbapenemases 37 C. β-lactamases 酵素水解試驗 37 D. 外套膜蛋白質 (OMPs) 表現量之分析 37 E. Efflux pumps Activity 38 三、ETP-NS E. cloacae 臨床菌株之分型 38 四、構築 ompC 和 ompF 之互補株並進行特性分析 39 A. 構築 ompC 和 ompF 之互補株 39 B. 比較野生株與互補株之 ertapenem 敏感性 39 五、探討 acrB 基因之表現量 40 討論 41 一、ESBL-producing E. cloacae 臨床菌株 41 二、外套膜蛋白質 (OMPs) 表現量之分析與影響 42 三、Efflux pumps 表現量之分析與抗藥角色 43 四、結論 44 五、比較 2009 年與 2010 年六月 CLSI guideline 之抗生素的最小抑制濃度 45 參考文獻 46 表 60 圖 67 附錄 77

    Alekshun, M. N., and S. B. Levy. 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037-1050.
    Ambler, R. P. 1980. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 289:321-331.
    Anderson, K. F., D. R. Lonsway, J. K. Rasheed, J. Biddle, B. Jensen, L. K. McDougal, R. B. Carey, A. Thompson, S. Stocker, B. Limbago, and J. B. Patel. 2007. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacetriaceae. J. Clin. Microbiol. 45:2723-2725.
    Arakawa, Y., M. Murakami, and K. Suzuki. 1995. A novel integron-like element carrying the metallo-beta-lactamase gene blaIMP. Antimicrob. Agents Chemother. 39:1612-1615.
    Barnaud, G., G. Arlet, C. Verdet, O. Gaillot, P. H. Lagrange, and A. Philippon. 1998. Salmonella enteritidis: AmpC plasmid-mediated inducible beta-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob. Agents Chemother. 42:2352-2358.
    Bauernfeind, A., Y. Chong, and S. Schweighart. 1989. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17:316-321.
    Bauernfeind, A., H. Grimm, and S. Schweighart. 1990. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection 18:294-298.
    Bell, J. M., J. D. Turnidge, and R. N. Jones. 2003. Prevalence of extended-spectrum beta-lactamase-producing Enterobacter cloacae in the Asia-Pacific region: results from the SENTRY Antimicrobial Surveillance Program, 1998 to 2001. Antimicrob. Agents Chemother. 47:3989-3993.
    Bibi, E., J. Adler, O. Lewinson, and R. Edgar. 2001. MdfA, an interesting model protein for studying multidrug transport. J. Mol. Microbiol. Biotechnol. 3:171-177.
    Bicknell, R., V. Knott-Hunziker, and S. G. Waley. 1983. The pH-dependence of class B and class C beta-lactamases. Biochem. J. 213:61-66.
    Biendo, M., C. Manoliu, G. Laurans, S. Castelain, B. Canarelli, D. Thomas, F. Hamdad, F. Rousseau, and F. Eb. 2008. Molecular typing and characterization of extended-spectrum TEM, SHV and CTX-M beta-lactamases in clinical isolates of Enterobacter cloacae. Res. Microbiol. 159:590-594.
    Bonnet, R. 2004. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48:1-14.
    Bradford, P. A. 2001. Extended-spectrum beta-lactamases in the 21st century:
    characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933-951.
    Bradford, P. A., Y. Yang, D. Sahm, I. Grope, D. Gardovska, and G. Storch. 1998. CTX-M-5, a novel cefotaxime-hydrolyzing beta-lactamase from an outbreak of Salmonella typhimurium in Latvia. Antimicrob. Agents Chemother. 42:1980-1984.
    Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:1211-1233.
    Bush, K., C. Macalintal, B. A. Rasmussen, V. J. Lee, and Y. Yang. 1993. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob. Agents Chemother. 37:851-858.
    Carattoli, A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 53:2227-2238.
    Chmelnitsky, I., S. Navon-Venezia, J. Strahilevitz, and Y. Carmeli. 2008. Plasmid-mediated qnrB2 and carbapenemase gene bla(KPC-2) carried on the same plasmid in carbapenem-resistant ciprofloxacin-susceptible Enterobacter cloacae isolates. Antimicrob. Agents Chemother. 52:2962-2965.
    Clinical and Laboratory Standards Institue. 2009. Performance standards for antimicrobial susceptibility testing. CLSI approved standard M100-S19, Vol. 27, No.1. Clinical and Laboratory Standards Institute, Wayne. Pa.
    Clinical and Laboratory Standards Institue. 2010. Performance standards for antimicrobial susceptibility testing. CLSI approved standard M100-S20, Vol. 30, No.1. Clinical and Laboratory Standards Institute, Wayne. Pa.
    Clinical and Laboratory Standards Institue. 2010. Performance standards for antimicrobial susceptibility testing. CLSI approved standard M100-S20, Vol. 30, No.15. Clinical and Laboratory Standards Institute, Wayne. Pa.
    Cornaglia, G., K. Russell, G. Satta, and R. Fontana. 1995. Relative importances of outer membrane permeability and group 1 beta-lactamase as determinants of meropenem and imipenem activities against Enterobacter cloacae. Antimicrob. Agents Chemother. 39:350-355.
    Datta, N., and P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:239-241.
    Doumith, M., M. J. Ellington, D. M. Livermore, and N. Woodford. 2009. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J. Antimicrob. Chemother. 63:659-667.
    Drawz, S. M., and R. A. Bonomo. 2010. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev. 23:160-201.
    Duez, C., W. Zorzi, F. Sapunaric, A. Amoroso, I. Thamm, and J. Coyette. 2001. The penicillin resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiology 147:2561-2569.
    Galleni, M., F. Lindberg, S. Normark, S. Cole, N. Honore, B. Joris, and J. M. Frere. 1988. Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. Biochem. J. 250:753-760.
    Ghuysen, J. M. 1991. Serine beta-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45:37-67.
    Gniadkowski, M., I. Schneider, A. Palucha, R. Jungwirth, B. Mikiewicz, and A. Bauernfeind. 1998. Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaxime-hydrolyzing beta-lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. Antimicrob. Agents Chemother. 42:827-832.
    Golemi, D., L. Maveyraud, S. Vakulenko, J. P. Samama, and S. Mobashery. 2001. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc. Natl. Acad. Sci. U S A 98:14280-14285.
    Gupta, V. 2007. An update on newer beta-lactamases. Indian J. Med. Res. 126:417-427.
    Haruta, S., H. Yamaguchi, and E. T. Yamamoto. 2000. Functional analysis of the active site of a metallo-beta-lactamases proliferating in Japan. Antimicrob. Agents Chemother. 44: 2304-2309.
    Hawser, S. P., S. K. Bouchillon, D. J. Hoban, R. E. Badal, P. R. Hsueh, and D. L. Paterson. 2009. Emergence of high levels of extended-spectrum-beta-lactamase-producing Gram-negative bacilli in the Asia-Pacific region: data from the study for monitoring antimicrobial resistance trends (SMART) program, 2007. Antimicrob. Agents Chemother. 53:3280-3284.
    Hirakata, Y., K. Izumikawa, and T. Yamaguchi. 1998. Rapid detection and evaluation of clinical characteristics of emerging multiple-drug-resistant Gram-negative rods carrying the metallo-beta-lactamase gene blaIMP. Antimicrob. Agents Chemother. 42:2006-2011.
    Hirsch, E. B. and V. H. Tam. 2010. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother. 65:1119-1125.
    Jacoby, G. A. 2009. AmpC beta-lactamases. Clin. Microbiol. Rev. 22:161-182.
    Jacoby, G. A. 1997. Extended-spectrum beta-lactamases and other enzymes providing resistance to oxyimino-beta-lactams. Infect. Dis. Clin. North. Am. 11:875-887.
    Kazmierczak, A., X. Cordin, J. M. Duez, E. Siebor, A. Pechinot, and J. Sirot. 1990. Differences between clavulanic acid and sulbactam in induction and inhibition of cephalosporinases in enterobacteria. J. Int. Med. Res. 18:67D-77D.
    Kitchel, B., J. K. Rasheed and J. B. Patel. 2009. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob. Agents Chemother. 53:3365-3370.
    Knothe, H., P. Shah, V. Krcmery, M. Antal, and S. Mitsuhashi. 1983. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11:315-317.
    Kobayashi, N., K. Nishino, and A. Yamaguchi. 2001. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J. Bacteriol. 183:5639-5644.
    Ko, W. C., H. M. Wu, T. C. Chang, J. J. Yan, and J. J. Wu. 1998. Inducible beta-lactam resistance in Aeromonas hydrophila: therapeutic challenge for antimicrobial therapy. J. Clin. Microbiol. 36:3188-3192.
    Lambert, P. A. 2005. Bacterial resistance to antibiotics: modified target sites. Adv. Drug Deliv. Rev. 57:1471-1485.
    Lauretti, L., M. L. Riccio, and A. Mazzariol. 1999. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 43:1584-1590.
    Lee, E. H., M. H. Nicolas, M. D. Kitzis, G. Pialoux, E. Collatz, and L. Gutmann. 1991. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob. Agents Chemother. 35:1093-1098.
    Leiza, G. M., J. C. Perez-Diaz, J. Ayala, J. M. Casellas, J. Martinez-Beltran, K. Bush, and F. Baquero. 1994. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated beta-lactamase with two molecular variants. Antimicrob. Agents Chemother. 38:2150-2157.
    Levy, S. B. 1992. Active efflux mechanisms for antimicrobial resistance. Antimicrob. Agents Chemother. 36:695-703.
    Levy, S. B., and B. Marshall. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10:S122-S129.
    Liu, Y. F., J. J. Yan, W. C. Ko, S. H. Tsai, and J. J. Wu. 2008. Characterization of carbapenem-non-susceptible Escherichia coli isolates from a university hospital in Taiwan. J. Antimicrob. Chemother. 61:1020-1023.
    Livermore, D. M., R. Canton, M. Gniadkowski, P. Nordmann, G. M. Rossolini, G. Arlet, J. Ayala, T. M. Coque, I. Kern-Zdanowicz, F. Luzzaro, L. Poirel, and N. Woodford. 2007. CTX-M: changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 59:165-174.
    Livermore, D. M., A. M. Sefton, and G. M. Scott. 2003. Properties and potential of ertapenem. J. Antimicrob. Chemother. 52:331-344.
    Mahamoud, A., J. Chevalier, S. Alibert-Franco, W. V. Kern, and J. M. Pages. 2007. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J. Antimicrob. Chemother. 59:1223-1229.
    Mallea, M., J. Chevalier, C. Bornet, A. Eyraud, A. Davin-Regli, C. Bollet, and J. M. Pages. 1998. Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology 144:3003-3009.
    Marquez, B. 2005. Bacterial efflux systems and efflux pumps inhibitors. Biochimie. 87:1137-1147.
    Massova, I., and S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob. Agents Chemother. 42:1-17.
    Maveyraud, L., D. Golemi, L. P. Kotra, S. Tranier, S. Vakulenko, S. Mobashery, and J. P. Samama. 2000. Insights into class D beta-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 8:1289-1298.
    Monnaie, D., and J. M. Frere. 1993. Interaction of clavulanate with class C beta-lactamases. FEBS Lett. 334:269-271.
    Musson, D. G., K. L. Birk, C. J. Kitchen, J. Zhang, J. Y. K. Hsieh, W. Fang, A. K. Majumdar, and J. D. Rogers. 2003. Assay methodology for the quantitation of unbound ertapenem, a new carbapenem antibiotic, in hunman plasma. J. Chromatog. 783:1-9.
    Nordmann, P., G. Cuzon, and T. Naas. 2009. The real threat of Klebsiella pneumonia carbapenemase-producing bacteria. Lancet. Infect. Dis. 9:228-236.
    Nordmann, P., and L. Poirel. 2002. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect. 8:321-331.
    Nüesch-Inderbinen, M. T., H. Hächler, and F. H. Kayser. 1996. Detection of genes coding molecular genetic method, and comparison with the E test. Eur. J. Clin. Microbiol. Infect. Dis. 15:398-402.
    Pagès, J. M., C. E. James, and M. Winterhalter. 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6:893-903.
    Pagès, J. M., M. Masi, and J. Barbe. 2005. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol. Med. 11:382-389.
    Paterson, D. L. 2006. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am. J. Infect, Control 34:S20-S28.
    Paterson, D. L., and R. A. Bonomo. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev. 18:657-686.
    Paterson, D. L., K. M. Hujer, A. M. Hujer, B. Yeiser, M. D. Bonomo, L. B. Rice, and R. A. Bonomo. 2003. Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob. Agents Chemother. 47:3554-3560.
    Pfeifer, Y., A. Cullik, and W. Witte. 2010. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol. (In Press, Corrected Proof) (doi:10.1016/j.ijmm.2010.04.005)
    Piddock, L. J. 2006. Multidrug-resistance efflux pumps - not just for resistance. Nat. Rev. Microbiol. 4:629-636.
    Podbielski, A., M. Woischnik, B. Pohl, and K. H. Schmidt. 1996. What is the size of the group A streptococcal vir regulon? The Mga regulator affects expression of secreted and surface virulence factors. Med. Microbiol. Immunol. 185:171-181.
    Polk, R. E. 1982. New drug evaluations: moxalactam (Moxam, Eli Lilly). Drug Intell. Clin. Pharm. 16:104-112.
    Queenan, A. M. and K. Bush. 2007. Carbapenemases: the versatile beta-lactamases. Clin. Microbiol. Rev. 20:440-458.
    Rasheed, J. K., J. W. Biddle and K. F. Anderson. 2008. Detection of the Klebsiella pneumoniae carbapenemase type 2 carbapenem-hydrolyzing enzyme in clinical isolates of Citrobacter freundii and K. oxytoca carring a common plasmid. J. Clin. Microbiol. 46:2066-2069.
    Roberts, D. P., P. D. Dery, I. Yucel, and J. S. Buyer. 2000. Importance of pfkA for rapid growth of Enterobacter cloacae during colonization of crop seeds. Appl. Environ. Microbiol. 66:87-91.
    Robledo, I. E., E. E. Aquino, and M. I. Sante. 2010. Detection of KPC in Acinetobacter sp. in Pueroto Rico. Antimicrob. Agents Chemother. 54:1354-1357.
    Saladin, M., V. T. B. Cao, T. Lambert, J. L. Donay, J. L. Herrmann, and Z. Ould-Hocine. 2002. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospital. FEMS Mcirobiol. Lett. 209:161-168.
    Schwarz, S., C. Kehrenberg, B. Doublet, and A. Cloeckaert. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 28:519-542.
    Senda, K., Y. Arakawa, and K. Nakashima. 1996. Multifocal outbreaks of metallo-beta-lactamases producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob. Agents Chemother. 40:349-353.
    Sifaoui, F., M. Arthur, L. Rice, and L. Gutmann. 2001. Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob. Agents Chemother. 45:2594-2597.
    Srinivasan, A., and J. B. Patel. 2008. Klebsiella pneumoniae carbapenemase-producing organisms: an ounce of prevention really is worth a pound of cure. Infect. Control Hosp. Epidermiol. 29:1107-1109.
    Spratt, B. G. 1994. Resistance to antibiotics mediated by target alterations. Science 264:388-393.
    Stapleton, P. D., K. P. Shannon, and G. L. French. 1999. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 beta-lactamase production and loss of an outer membrane protein. Antimicrob. Agents Chemother. 43:1206-1210.
    Su, L. H., H. L. Chen, J. H. Chia, S. Y. Liu, C. Chu, T. L. Wu, and C. H. Chiu. 2006. Distribution of a transposon-like element carrying bla(CMY-2) among Salmonella and other Enterobacteriaceae. J. Antimicrob. Chemother. 57:424-429.
    Szabó, D., F. Silveira, A. M. Hujer, R. A. Bonomo, K. M. Hujer, J. W. Marsh, C. R. Bethel, Y. Doi, K. Deeley, and D. L. Paterson. 2006. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob. Agents Chemother. 50:2833-2835.
    Takahashi, A., S. Yomoda, and I. Kobayashi. 2000. Detection of carbapenemase-producing Acinetobacter baumannii in a hospital. J. Clin. Microbial. 38:526-529.
    Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233-2239.
    Tipper, D. J., and J. L. Strominger. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. U S A 54:1133-1141.
    Tranier, S., A. T. Bouthors, L. Maveyraud, V. Guillet, W. Sougakoff, and J. P. Samama. 2000. The high resolution crystal structure for class A beta-lactamase PER-1 reveals the bases for its increase in breadth of activity. J. Biol. Chem. 275:28075-28082.
    Villarin, J. M., P. A. Bradford, and C. M. Urban. 2007. Surveillance and detection of inhibitor-resistant beta-lactamases in clinical isolates of Escherichia coli. CUSJ 2:11-19.
    Villegas, M. V., K. Lolans, A. Correa, J. N. Kattan, J. A. Lopez, and J. P. Quinn. 2007. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob. Agents Chemother. 51:1553-1555.
    Walsh, T. R. 2008. Clinically significant carbapenemases: an update. Curr. Opin. Infect. Dis. 21:367-371.
    Williamson, R., C. le Bouguenec, L. Gutmann, and T. Horaud. 1985. One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J. Gen. Microbiol. 131:1933-1940.
    Winokur, P. L., A. Brueggemann, D. L. Desalvo, L. Hoffmann, M. D. Apley, and E. K. Uhlenhopp. 2000. Animal and human multidrug-resistant, cephalosporin-resistant Salmonella isoaltes expressing a plasmid-mediated CMY-2 AmpC beta-lactamase. Antimicrob. Agents Chemother. 44:2777-2783.
    Wolter, D. J., P. M. Kurpiel and N. Woodford. 2009. Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. Antimicrob. Agents Chemother. 53:557-562.
    Wu, L. T., S. W. Hung, Y. C. Chuang, H. E. Chen, R. N. Jones, and W. L. Yu. 2005. Identification of a novel cephalosporinase (DHA-3) in Klebsiella pneumonia isolated in Taiwan. Clin. Microbiol. Infect. 11:893-897.
    Wu, Q., Q. Liu, L. Han, J. Sun, and Y. Ni. 2010. Plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 and ArmA 16S rRNA methylase conferring high-level aminoglycoside resistance in carbapenem-resistant Enterobacter cloacae in China. Diagn. Microbiol. Infect. Dis. 66:326-328.
    Yan, J. J., C. Y. Hong, W. C. Ko, Y. J. Chen, S. H. Tsai, C. L. Chuang, and J. J. Wu. 2004. Dissemination of blaCMY-2 among Escherichia coli isolates from food animals, retail ground meats, and humans in southern Taiwan. Antimicrob. Agents Chemother. 48:1353-1356.
    Yan, J. J., W. C. Ko, S. H. Tsai, H. M. Wu, Y. T. Jin, and J. J. Wu. 2000. Dissemination of CTX-M-3 and CMY-2 beta-lactamases among clinical isolates of Escherichia coli in southern Taiwan. J. Clin. Microbiol. 38:4320-4335.
    Yan, J. J., W. C. Ko, S. H. Tsai, H. M. Wu, and J. J. Wu. 2001. Outbreak of infection with multidrug-resistant Klebsiella pneumoniae carrying blaIMP-8 in a university medical center in Taiwan. J. Clin. Microbiol. 39:4433-4439.
    Yan, J. J., J. J. Wu, S. H. Tsai, and C. L. Chuang. 2004. Comparison of the double-disk, combined disk, and E-test methods for detecting metallo-beta-lactamases in Gram-negative bacilli. Diag. Microb. Infect. Dis. 49:5-11.
    Yigit, H., G. J. Anderson, J. W. Biddle, C. D. Steward, J. K. Rasheed, L. L. Valera, J. E. McGowan, Jr., and F. C. Tenover. 2002. Carbapenem resistance in a clinical isolate of Enterobacter aerogenes is associated with decreased expression of OmpF and OmpC porin analogs. Antimicrob. Agents Chemother. 46:3817-3822.
    Yigit, H., A. M. Queenan, G. J. Anderson, A. Domenech-Sanchez, J. W. Biddle, C. D. Steward, S. Alberti, K. Bush, and F. C. Tenover. 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45:1151-1161.
    Yu, W. L., K. C. Cheng, C. J. Chi, H. E. Chen, Y. C. Chuang, and L. T. Wu. 2006. Characterisation and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacter cloacae isolated from a district teaching hospital in Taiwan. Clin. Microbiol. Infect. 12:579-582.
    Yu, W. L., Y. C. Chuang, and J. Walther-Rasmussen. 2006. Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection, treatment and infection control. J. Microbiol. Immunol. Infect. 39:264-277.
    Zapun, A., C. Contreras-Martel, and T. Vernet. 2008. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol. Rev. 32:361-385.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE