簡易檢索 / 詳目顯示

研究生: 王瀚緯
Wang, Han-Wei
論文名稱: 氧化鎢/氧化鋯雙層電阻式記憶體類神經網路應用之模型開發
Modeling of WOx/ZrOx Bilayer Resistive Random-Access Memory in Neural Networks
指導教授: 江孟學
Chiang, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 87
中文關鍵詞: 電阻式隨機存取記憶體簡易模型深度學習Verilog-AHSPICETensorflow
外文關鍵詞: Resistive Random Access Memory, compact model, deep learning, Verilog-A, HSPICE, Tensorflow
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這個日新月異的時代,人工智慧迅速蓬勃發展,對於類神經網路的元件要求也勢必提高,因此有了新興記憶體的出現,在原有的靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)和快閃記憶體(Flash Memory)下,出現另一種可能性。而電阻式隨機存取記憶體(RRAM)就是新興記憶體的一種,除了功耗、速度和互補式金屬氧化物半導體(CMOS)製程相容的優勢外,也因其金屬、絕緣體、金屬(MIM)結構簡單,具有低成本的特性,被廣泛討論並使用。根據研究指出,現今電腦架構都是採用范紐曼架構,意旨資料運算和儲存是分開處理,導致功率消耗大多產生在運算單元與記憶體單元的資料傳輸,而不是運算。記憶體內運算是其中一種解決方式,直接在記憶體內運算,再傳輸到處理器做後續處理,可以減少功耗散失,以高效率的方式提升運算效能。這篇論文將會探討RRAM的簡易模型,並將其運用在Tensorflow框架模擬RRAM元件在類神經網路的效能。
    這篇論文旨在探討利用硬體描述語言Verilog-A建立RRAM簡易模型,同時結合物理傳輸機制,輔以HSPICE模擬軟體測試I-V特性曲線及提供導電絲面積計算模型,RRAM的操作是透過輸入偏壓改變元件電阻,藉由內部絕緣層狀態使其呈現高低不同阻值。RRAM良好的線性增強和抑制特性,可以提供不同的電導值,模擬仿生網路之類比行為操作的能力,並利用Tensorflow框架模擬RRAM元件在類神經網路的辨識準確度以及功耗,再與其他不同材料的RRAM進行比較與探討。

    In this rapidly changing era, artificial intelligence is experiencing rapid development, leading to an inevitable increase in the requirements for components of neural networks. As a result, emerging memory technologies have emerged. Under the existing categories of Static Random-Access Memory (SRAM), Dynamic Random-Access Memory (DRAM), and Flash Memory, another possibility has emerged. Resistive Random-Access Memory (RRAM) is one such emerging memory, known for its advantages in power consumption, speed, and compatibility with Complementary Metal-Oxide-Semiconductor (CMOS) processes. Additionally, its simple Metal-Insulator-Metal (MIM) structure, comprising metal, insulator, and metal layers, contributes to its low-cost characteristics, making it widely discussed and utilized. According to research, modern computer architectures typically adhere to the Von Neumann architecture, meaning that data computation and storage are handled separately. As a result, most of the power consumption occurs in the data transmission between the computing unit and the memory unit, rather than the computing. Computing-in-memory is one solution to address this issue. By conducting computations directly within memory and then transferring the results to the processor for further processing, power dissipation can be reduced, thereby enhancing computational efficiency in an effective manner. This paper will explore a compact model of RRAM and apply it within the Tensorflow framework to simulate the performance of RRAM device.
    This paper aims to explore the establishment of a compact model of RRAM using the hardware description language Verilog-A, while integrating physical transport mechanisms. Additionally, it will complement the HSPICE simulation software to test I-V characteristic curves and provide a model for calculating the conductive filament area. RRAM operates by changing the resistance of the device through input bias voltages, causing it to exhibit different resistance states due to the internal insulator layer. Due to RRAM's excellent linear potentiation and depression characteristics, it can provide different conductance values, enabling the simulation of analog behavior operations in bio-inspired networks. We will utilize the TensorFlow framework to simulate the recognition accuracy and power consumption of RRAM devices within neural networks. Subsequently, we will compare and discuss these results with RRAM devices made of different materials.

    摘要 I Abstract III 誌謝 V Table Captions X Figure Captions XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation 2 1.3 Introduction of Simulation Tools 2 1.4 Overview of The Thesis 3 Chapter 2 Introduction of RRAM 4 2.1 Basic Operation 4 2.2 Classification of RRAM 5 2.2.1 Unipolar and Bipolar 5 2.2.2 Metal-ion-based Devices and Oxygen-ion-based Devices 6 2.3 Transmission Mechanism 10 2.3.1 Ohmic Conduction 11 2.3.2 Schottky Emission 12 2.3.3 Poole-Frenkel Emission 13 2.3.4 Hopping Conduction 14 2.3.5 Tunneling 14 2.3.6 Space Charge Limited Current 16 2.4 Modeling of RRAM Devices 17 2.4.1 Stanford /ASU Model 17 2.4.2 Physical Electro-thermal Model 19 2.4.3 Huang’s Physical Model 21 2.4.4 Filament Dissolution Model 23 2.4.5 Bocquet Bipolar Model 25 Chapter 3 Experiment 28 3.1 Device Fabrication 28 3.2 Measurement 29 3.2.1 DC Characteristics 29 3.2.2 Memristive and Synaptic Behaviors 30 3.3 Extraction and Analysis 32 3.3.1 Ohmic Conduction and SCLC 32 3.3.2 FN Tunneling 35 3.4 Python Simulation 38 3.4.1 Ohmic Conduction 38 3.4.2 Schottky Emission 39 3.4.3 Poole-Frenkel Emission 41 3.4.4 Tunneling 42 3.4.5 Space Charged Limited Current 43 3.5 Calibration and Model Building 45 Chapter 4 RRAM Compact Model 47 4.1 Simulation of DC Characteristics 47 4.1.1 SET Process 48 4.1.2 RESET Process 49 4.2 Simulation of P/D Cycles 49 4.3 Operation of the RRAM Compact Model 50 4.3.1 DC Characteristics 50 4.3.2 P/D Cycles 51 4.4 Simulation Results and Discussion 52 Chapter 5 Application on Neural Network 55 5.1 Neural Network Software Architecture 55 5.1.1 Neuron 55 5.1.2 Activation Function 56 5.1.3 Backpropagation 57 5.1.4 Software Framework and Simulation Platform Architecture 58 5.2 Modeling of Hardware Implementation 60 5.2.1 Synaptic Program Pulse and Weight Equation 60 5.2.2 Training Process in Hardware 61 5.3 Energy Consumption 63 5.3.1 Forward and Backward Energy Consumption 63 5.3.2 Update Energy Consumption 65 5.4 Result and Discussion 65 Chapter 6 Conclusion 68 Chapter 7 Future Work 70 References 71

    [1] K. -C. Chuang et al., "Impact of the Stacking Order of HfOx and AlOx Dielectric Films on RRAM Switching Mechanisms to Behave Digital Resistive Switching and Synaptic Characteristics," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 589-595, 2019, doi: 10.1109/JEDS.2019.2915975.
    [2] Sawa, Akihito. “Resistive switching in transition metal oxides." Materials today 11.6 (2008): 28-36.
    [3] H. . -S. P. Wong et al., "Metal–Oxide RRAM," in Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June 2012, doi: 10.1109/JPROC.2012.2190369.
    [4] Jennifer Rupp, Daniele Ielmini, Ilia Valov "Resistive Switching: Oxide Materials, Mechanisms, Devices and Operations." ISSN 1386-3290 Electronic Materials: Science & Technology ISBN 978-3-030-42423-7 ISBN 978-3-030-42424-4 (eBook) https://doi.org/10.1007/978-3-030-42424-4
    [5] Y.-S. Lai, et al. “Charge-transport characteristics in bistable resistive poly (N-vinylcarbazole) films." IEEE Electron Device Letters 27 (2006): 451-453.
    [6] K.-C. Chang, et al. “Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment." Applied Physics Letters 99 (2011): 263501-1-4.
    [7] S. Yu, et al. “Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model." Applied Physics Letters 99 (2011): 063507-1-3.
    [8] C. Kuan-Chang, et al. “Hopping effect of hydrogen-doped silicon oxide insert RRAM by supercritical CO2 fluid treatment." IEEE Electron Device Letters 34 (2013): 617-619.
    [9] S. M. Sze, et al. “Physics of semiconductor devices." John Wiley & Sons, New York (2006): 227-228.
    [10] Y.-E. Syu, et al. “Asymmetric Carrier Conduction Mechanism by Tip Electric Field in Resistance Switching Device." IEEE Electron Device Letters 33 (2012): 342-344.
    [11] Zahoor, F., Azni Zulkifli, T.Z. & Khanday, F.A. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res Lett 15, 90 (2020). https://doi.org/10.1186/s11671-020-03299-9
    [12] Chen PY, Yu S (2015) Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans Electron Devices 62(12):4022–4028
    [13] Kim S, Kim SJ, Kim KM, Lee SR, Chang M, Cho E, et al. (2013) Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci Rep 3:1680
    [14] Huang P, Liu XY, Chen B, Li HT, Wang YJ, Deng YX, et al. (2013) A physics-based compact model of metal-oxide-based RRAM DC and AC operations. IEEE Trans Electron Devices 60(12):4090–4097
    [15] Panda, D., Sahu, P.P. & Tseng, T.Y. A Collective Study on Modeling and Simulation of Resistive Random Access Memory. Nanoscale Res Lett 13, 8 (2018). https://doi.org/10.1186/s11671-017-2419-8
    [16] Bocquet M, Aziza H, Zhao W, Zhang Y, Onkaraiah S, Muller C, et al. (2014) Compact modeling solutions for oxide-based resistive switching memories (OxRAM). J Low Power Electron Appl 4(1):1–14
    [17] Pei-En, Lin (2021) Capacitive-Resistive Switching Characteristics and Synaptic Functions of Double Dielectric Layered Devices.
    [18] T. -H. Chiang and J. F. Wager, "Electronic Conduction Mechanisms in Insulators," in IEEE Transactions on Electron Devices, vol. 65, no. 1, pp. 223-230, Jan. 2018, doi: 10.1109/TED.2017.2776612.
    [19] Gismatulin, A.A., Kamaev, G.N., Kruchinin, V.N. et al. Charge transport mechanism in the forming-free memristor based on silicon nitride. Sci Rep 11, 2417 (2021). https://doi.org/10.1038/s41598-021-82159-7.
    [20] C. Chaneliere, J. L. Autran, R. A. B. Devine; Conduction mechanisms in Ta2O5/SiO2 and Ta2O5/Si3N4 stacked structures on Si. J. Appl. Phys. 1 July 1999; 86 (1): 480–486. https://doi.org/10.1063/1.370756
    [21] A. Siemon, D. Wouters, S. Hamdioui and S. Menzel, "Memristive Device Modeling and Circuit Design Exploration for Computation-in-Memory," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5, doi: 10.1109/ISCAS.2019.8702600.
    [22] Wei-Chen, Hung(2019) A deep learning simulation platform for non-volatile memory-based analog neuromorphic circuits
    [23] Gao, L., et al., Fully parallel write/read in resistive synaptic array for accelerating on-chip learning. Nanotechnology, 2015. 26(45): p. 455204.
    [24] Park, S., et al. Neuromorphic speech systems using advanced ReRAM-based synapse. in 2013 IEEE International Electron Devices Meeting. 2013.
    [25] Jo, S.H., et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010. 10(4): p. 1297-301.

    無法下載圖示 校內:2027-06-30公開
    校外:2027-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE