| 研究生: |
邱健倫 Chiu, Chien-lun |
|---|---|
| 論文名稱: |
密閉空間火場模擬及熱應力分析 Numerical Simulation of Enclosure Fire and Thermal Stress Analysis |
| 指導教授: |
江滄柳
Jiang, Tsung-leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 火場模擬 、大尺度渦流模擬 、熱應力 |
| 外文關鍵詞: | Fire Simulation, LES, Thermal Stress |
| 相關次數: | 點閱:94 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要分為兩個部分,第一個部分主要是以美國國家標準局之建築防火研究室(NIST/BFRL)所發展的CFD火災模擬軟體FDS(Fire Dynamics Simulator)來模擬暫態的密空間的火場,再以文獻的實驗驗證用大尺度渦流模擬(LES)法在模擬房間紊流流場及溫度分佈之能力,並依Smagorinsky模式裡不同經驗參數的模擬結果根據實驗數據來加以分析比較,結果顯示在通風口的速度場及溫度場分佈與實驗數據比較都有令人滿意的結果。在驗證模擬之可靠性後,第二個部分將針對不同熱釋放率並將原本設為絕熱的天花板給定合理之混凝土相關性質,並假設材料性質分佈均勻,以一維共軛熱傳方式預測房間天花板平均溫度,最後以有限元素分析軟體ANSYS做相關的熱應力分析,發現在天花板高溫區域附近有最大壓應力,而在模擬時間內所造成之最大熱應力階低於混凝土本身的結構強度。
This work mainly includes two parts. The first one is using the Fire Dynamics Simulator (FDS) developed by NIST/BFRL to simulate the transient enclosure fire. The LES (Large eddy simulation) technique in FDS is then validated by comparing the turbulent flow and temperature distribution of the room with the experimental data. The results of simulation are compared with experimental data under different empirical constants. The results show that the predictions of the velocity and temperature distributions near the vent are in good agreement with the experimental data. The second part is focused on the prediction of the ceiling temperature distributions. The boundary conditions of the ceiling are set to be thermally-thick. The temperature distributions are then imported to the finite element software, ANSYS, to evaluate the thermal stresses. The result shows that the greatest compressive stress occurs near the high temperature part of the ceiling. Nevertheless, the simulated thermal stress is below the structure strength of the concrete under the present conditions.
【1】 林誠興, “區域模式數值模型應用於建築物功能性防護設計之探討”, 工業安全科技, 2006.
【2】 陳朝慶, ”無塵室火災模擬”, 中山大學機械研究所碩士論文, 2001.
【3】 王俊傑, ”高科技廠房防火工程設計應用-以晶圓廠為例”, 交通大學機械研究所碩士論文, 2002.
【4】 黃裕霖, “半導體廠潔淨室火場數值模型之研究”, 台灣大學機械研究所碩士論文, 2002.
【5】 K. Prasad and H. Baum, ”Fire Structure Interface and Thermal Response of World Trade Center Towers”, NIST NCSTAR 1-5G, 2005.
【6】 B. Karlsson and J. G. Quintiere, “Enclosure Fire Dynamics”, 2000.
【7】 NFPA 92A, Recommended Practice for Smoke-Control Systems, 2000.
【8】 H.E. Nelson, “FPETOOL: Fire Protection Engineering Tools for Hazard Estimation“, National Institute of Standards and Technology Internal Report 4380, Gaithersburg, MD, 1990.
【9】 L. Kerrison, E.R. Galea, N. Hoffmann and M.K. Patel, “A Comparison of A FLOW3D Based Fire Field Model with Experimental Room Fire Data”, Fire Safety Journal, Vol.23, pp.387-411, 1994.
【10】 K.D. Steckler, J.G.. Quintiere and W.J. Rinkinen, “Flow Induced by Fire in A Compartment”, NBSIR 82-2520, National Bureau of Standards, 1982.
【11】 K.B. McGrattan, H.R. Baum and R.G. Rehm, “Large Eddy Simulation of Smoke Movement”, BFRL-NIST, 1998.
【12】 H. Xue, J.C. Ho and Y.M. Cheng, “Comparison of Different Combustion Models in Enclosure Fire Simulation”, Fire Safety Journal, Vol.36, pp.37-54, 2001.
【13】 Y. Xin., “Assessment of Fire Dynamics Simulation for Engineering Applications: Grid and Domain Size Effects”, In Proceedings of the Fire Suppression and Detection Research Application Symposium, NFPA, 2004.
【14】 Y. Xin, J.P. Gore, K.B. McGrattan, R.G. Rehm and H.R. Baum, “Fire Dynamics Simulation of Turbulent Buoyant Flame Using A Mixture-Fraction-Based Combustion Model”, Combustion and Flame, Vol.141, pp.329-335, 2005.
【15】 N.L. Ryder, J.A. Sutula, C.F. Schemel, A.J. Hamer and V.V. Brunt., “Consequence Modeling Using The Fire Dynamics Simulator”, Journal of Hazardous Materials, Vol.115, pp.149-154, 2004.
【16】 K. McGrattan, BFRL-NIST, “Fire Dynamics Simulator 4 Technical Reference Guide”, 2006.
【17】 W. Zhang, A. Hamer, M. Klassen, D. Carpenter and R. Roby, “Turbulence Statistics in A Fire Room Model by Large Eddy Simulation”, Fire Safety Journal, Vol.37, pp.721-752, 2002.
【18】 G.H. Yeoh, R.K.K. Yuen, S.C.P. Chueng and W.K. Kwok, “On Modeling Combustion, Radiation and Soot Processes In Compartment Fires”, Building and Environment, Vol.38, pp.771-785, 2003.
【19】 E. Cui and W.K. Chow, “Simulation on Indoor Aerodynamics Induced by An Atrium Fire”, Building and Environment, Vol.40, pp.1194-1206, 2004.
【20】 N.D. Pope and C.G. Bailey, “Quantitative Comparison of FDS and Parametric Fire Curves with Post-Flashover Compartment Fire Test Data”, Fire Safety Journal, Vol. 24, pp.99-100, 2006.
【21】 沈進發, 陳舜田, 林尚賢, ”以X射線繞射試驗法推測混凝土受火害程度之研究”, 國科會專案研究計畫NSC 80-0410-E011-08研究報告, 1991.
【22】 沈進發, 陳舜田, 張郁慧, “火害延時對混凝土材料性質之影響”, 國科會專案研究計畫NSC 82-0410-E011-079研究報告, 1993.
【23】 沈進發, 陳舜田, 嚴順然, “高性能混凝土耐火性能之研究(II)-高性能混凝土火害再水化、強度恢復與性質變化之研究”, 國科會專案研究計畫NSC 85-2211-E011-009研究報告, 1996.
【24】 沈進發, 陳舜田, 涂耀賢, “以燒失量試驗法推測混凝土受火害程度之研究”, 國科會專案研究計畫NSC 80-0410-E011-09研究報告, 1991.
【25】 賴政忠, ”鋼筋混凝土梁柱構件於火害中強度評估之研究”, 成功大學土木研究所碩士論文, 2006.
【26】 B. Ellingwood and J. Shaver, “ Effects of Fire Reinforced Concrete Members”, Journal of the Structural Division, ASCE, V.106, pp.2151-2166, Nov., 1980.
【27】 T.T. Lie, T.D. Lin, D.E. Allen and M.S. Abrams, “ Fire Resistance of Reinforced Concrete Columns”, National Research Council of Canada, DBR Paper No. 1167, NRCC 23065, 1984.
【28】 W. Grosshandler, “Fire Resistance Determination and Performance Prediction Research Needs Workshop: Proceedings”, NISTIR6890, 2002.
【29】 沈進發, 陳舜田, “高溫造成混凝土材料性質改變及火場溫度推估法”, 建築物火害及災後安全評估法, P85~P116, 1999.
【30】 ACI Committee 216, “Guide for Determining the Fire Endurance of Concrete Elements”, American Concrete Institute, 1994.
【31】 B. Persson, “Poisson’s Ratio of High-Performance Concrete”, Cement and Concrete Research, Vol.29, 1647-1653, 1999.
【32】 T.P. Chang, S.H. Lin, H.C. Lin and P.R. Lin, “Effects of Various Fineness Moduli of Fine Aggregate on Engineering Properties of High-Performance Concrete”, Journal of the Chinese Institute of Engineers, Vol.24, No.3, pp.289-300, 2001.
【33】 林瑞棋, “鋼筋混凝土結構繫鈑梁與柱抗震補強工法設計(一)”, 台灣省土木技師公會網, 2003.
【34】 H.R. Baum and K.B. McGrattan, “Simulation of Large Industrial Outdoor Fires”, In Fire Safety Science- Proceedings of the Sixth International Symposium. International Association for Fire Safety Science, 2000.
【35】 J. Smagorinsky, “General Circulation Experiments with the Primitive Equations. I. The Basic Experiment”, Monthly Weather Review, Vol.91, No.3, pp.99-164, 1963.
【36】 C. Huggett, “Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements”, Fire and Materials, Vol.4, No.2, pp.61-65, 1980.
【37】 ANSYS INC., ANSYS Theory Manual, Version 10.0, 2005.