簡易檢索 / 詳目顯示

研究生: 吳宜臻
Wu, Yi-Zhen
論文名稱: 蕾莎瓦在肝癌小鼠中會誘發T細胞免疫檢查受體的表現
Sorafenib induces expression of immune checkpoint receptors on T cells in hepatoma-bearing mice
指導教授: 張志鵬
Chang, Chih-Peng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 52
中文關鍵詞: 蕾莎瓦肝癌程序化死亡分子-1細胞毒性T淋巴細胞相關抗原4信號轉導及轉錄激活蛋白3
外文關鍵詞: Sorafenib, Hepatocellular carcinoma, Programmed death-1, Cytotoxic T-lymphocyte-associated protein 4, Signal transducer and activator of transcription 3
相關次數: 點閱:147下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝細胞癌(以下簡稱肝癌)是現居全球前五名的常見癌症,亦是高居前三名的高致死率癌症。而在台灣,更是在十大致死癌症中的第二名。為了治療肝癌末期病患,一個多激酶抑制藥劑稱為蕾莎瓦,是唯一通過核准的臨床用藥。然而,近十年來許多研究發現,在長期服用蕾莎瓦的肝癌病患中,對蕾莎瓦會出現抗藥性的情形。在包含肝癌的許多癌症中顯示,免疫細胞的高度浸潤與對化療藥物的低反應和預後有關。然而,化學藥物如何去調控免疫細胞仍需要更進一步的探討。在本篇研究中,我們發現以蕾莎瓦治療肝癌小鼠時,不論在周邊血液或是腫瘤內部都可以發現在CD4+和CD8+T細胞表面,抑制受體PD-1(程序化死亡分子1)和CTLA-4(細胞毒性T 淋巴細胞相關抗原4)的表現量明顯增加。我們也進一步證實,蕾莎瓦不但會增加抑制受體的表現也會抑制T細胞的增生。STAT3 (信號轉導及轉錄激活蛋白3)是腫瘤增生的重要的調節分子,已知它會促進PD-1和CTLA-4的表現。因此,我們利用STAT3的抑制劑stattic來研究STAT3在蕾莎瓦誘導的PD-1表現中的角色。我們發現抑制STAT3的活性能夠減少PD-1在T細胞上的表現,並改善蕾莎瓦在肝癌模式小鼠中的療效。從上述結果,我們認為蕾莎瓦所誘導的STAT3在T細胞去活化和對蕾莎瓦治療的反應中扮演一個非常重要的角色。以STAT3為標的來改善蕾莎瓦在肝癌病患上的效果可能是未來可以嘗試的治療方式。

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer-related mortality in the world. In Taiwan, HCC is the second among the top ten leading causes of death in cancer. To treat advanced HCC, the multiple-kinase inhibitor, sorafenib, is the only standard clinical drug. However, in recent decades, many studies have shown that HCC patients exhibited resistance towards sorafenib during long-term treatment. In many cancers, including HCC, high infiltration of immune cells is associated with poor response to chemodrugs and prognosis. Nevertheless, how chemodrugs regulate these immune cells is yet to be determined. In this study, we found that the HCC-bearing mice treated with sorafenib showed an increased expression of inhibitory receptor PD-1 (Programmed death-1) and CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) on both peripheral and intra-tumor CD4+ and CD8+ T cells. We also provided evidence to show that sorafenib not only increased inhibitory receptor expression but also inhibited T cell proliferation. STAT3 (Signal transducer and activator of transcription 3), the key mediator of tumor progression is known to induce PD-1 and CTLA-4. Hence, we used STAT3 inhibitor stattic to examine its role in sorafenib-induced PD-1 expression. We found that inactivation of STAT3 was able to decrease PD-1 expression on T cells and improve sorafenib efficacy in HCC-bearing mice. According to these results, we suggest that sorafenib-induced STAT3 plays a critical role on T cell inactivation and limited responses to sorefenib treatment. Targeting STAT3 may serve a promising therapeutic intervention to improve sorafenib responses in HCC patients.

    中文摘要 I Abstract II Acknowledgement III Table of contents IV Abbreviations VII I. Introduction 1 1. Etiology of hepatocellular carcinoma 1 2. Sorafenib 3 3. Immune checkpoint 6 4. STAT3 8 II. Objective and Specific Aims 11 III. Materials and methods 12 1. Materials 12 1.1 Animal 12 1.2 Cells 12 1.3 Antibody 13 1.4 Reagents 14 2. Methods 18 2.1 Mice in situ hepatoma model 18 2.2 Flow cytometry 18 2.3 Immunofluorescence assay 19 2.4 ELISA 19 2.5 Primary splenocyte isolation 20 2.6 Preparation of hepatoma cell condition medium 20 2.7 T cell proliferation assay 21 2.8 Intrahepatic lymphocytes (IHLs) isolation 21 2.9 Statistical analysis 21 IV. Results 22 IV-1. Dose-related responses and liver damage in sorafenib-treated HCC-bearing mice 22 IV-2. Sorafenib treatment increases expression of CTLA-4 and PD-1 on peripheral T cells of HCC-bearing mice. 22 IV-3. Sorafenib treatment increases infiltration of CTLA-4 and PD-1 expressed T cells to HCC tissues.. 23 IV-4. T cells from sorafenib-treated HCC-bearing mice reduces proliferation activity in responses to Con A.. 24 IV-5. 5. Sorafenib treatment increases expression of CTLA-4 and PD-1 on splenocytes in vitro 24 IV-6. Inhibition of STAT3 by inhibitor stattic reduces sorafenib-induced PD-1 expression on T cells. 25 IV-7. Stattic improves sorafenib efficacy in treating HCC-bearing mice. 25 V. Conclusion 26 VI. Discussion 27 VII. References 30 VIII. Figures 36 Figure 1. Dose-related responses and liver damage by treatment of sorafenib in HCC-bearing mice 36 Figure 2. Sorafenib treatment increases expression of CTLA-4 and PD-1 on both CD4+ and CD8+ peripheral T cells of HCC-bearing mice. 38 Figure 3. Sorafenib treatment downregulates the serum levels of IL-6, IL-12 and IL-33 in HCC-bearing mice. 40 Figure 4. Sorafenib treatment increases infiltration of PD-1+ CD4+ and CTLA-4+CD4+ T cells in hepatoma tissues. 41 Figure 5. Sorafenib treatment increases infiltration of PD-1+ CD8+ and CTLA-4+CD8+ T cells in hepatoma tissues. 43 Figure 6. T cells from sorafenib-treated HCC-bearing mice shows low proliferation responses to Con A. 45 Figure 7. Co-treatment of MCM and sorafenib increases expression of PD-1 and CTLA4 on splenocytes. 46 Figure 8. Stattic reduces sorafenib-induced PD-1 expression on T cells . 48 Figure 9. Stattic improves sorafenib efficacy in HCC-bearing mice.. 49 Figure 10. Sorafenib treatment increases suppressive receptors PD-1 and CTLA-4 expression on T cells may be via STAT3 related pathway in hepatoma-bearing mice. 51 IX. Appendix 52 Appendix 1. Sorafenib treatment increases infiltration of regulatory T cells in hepatoma tissues. 52

    1 Bosch, F. X., Ribes, J., Diaz, M. & Cleries, R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-s16 (2004).
    2 El-Serag, H. B. & Rudolph, K. L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576,(2007).
    3 Mittal, S. & El-Serag, H. B. Epidemiology of hepatocellular carcinoma: consider the population. Journal of Clinical Gastroenterology 47 Suppl, S2-6, (2013).
    4 El-Serag, H. B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264-1273.e1261, 2011.12.061 (2012).
    5 Sitia, G. et al. Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proceedings of the National Academy of Sciences of the United States of America 109, E2165-2172, 1209182109 (2012).
    6 Su, I. J. et al. The emerging role of hepatitis B virus pre-S2 deletion mutant proteins in HBV tumorigenesis. Journal of Biomedical Science 21, 98, (2014).
    7 Peng, Z. et al. Integration of the hepatitis B virus X fragment in hepatocellular carcinoma and its effects on the expression of multiple molecules: a key to the cell cycle and apoptosis. International Journal of Oncology 26, 467-473 (2005).
    8 de Oliveria Andrade, L. J. et al. Association Between Hepatitis C and Hepatocellular Carcinoma. Journal of Global Infectious Diseases 1, 33-37, (2009).
    9 Kwun, H. J., Jung, E. Y., Ahn, J. Y., Lee, M. N. & Jang, K. L. p53-dependent transcriptional repression of p21(waf1) by hepatitis C virus NS3. The Journal of General Virology 82, 2235-2241 (2001).
    10 Lan, K. H. et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 21, 4801-4811, (2002).
    11 Lee, M. N. et al. Hepatitis C virus core protein represses the p21 promoter through inhibition of a TGF-beta pathway. The Journal of General Virology 83, 2145-2151 (2002).
    12 Munakata, T., Nakamura, M., Liang, Y., Li, K. & Lemon, S. M. Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 102, 18159-18164, (2005).
    13 Donato, F. et al. Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. American Journal of Epidemiology 155, 323-331 (2002).
    14 Hutchinson, S. J., Bird, S. M. & Goldberg, D. J. Influence of alcohol on the progression of hepatitis C virus infection: a meta-analysis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 3, 1150-1159 (2005).
    15 Adami, H. O. et al. Alcoholism and liver cirrhosis in the etiology of primary liver cancer. International Journal of Cancer. Journal international du cancer 51, 898-902 (1992).
    16 Wu, H. C. & Santella, R. The Role of Aflatoxins in Hepatocellular Carcinoma. Hepatitis Monthly 12, e7238, (2012).
    17 Kew, M. C. Aflatoxins as a cause of hepatocellular carcinoma. Journal of Gastrointestinal and Liver Diseases : JGLD 22, 305-310 (2013).
    18 Villar, S. et al. Aflatoxin-induced TP53 R249S mutation in hepatocellular carcinoma in Thailand: association with tumors developing in the absence of liver cirrhosis. PloS one 7, e37707, (2012).
    19 Bressac, B., Kew, M., Wands, J. & Ozturk, M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350, 429-431, (1991).
    20 Baffy, G., Brunt, E. M. & Caldwell, S. H. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. Journal of Hepatology 56, 1384-1391, (2012).
    21 Matteoni, C. A. et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116, 1413-1419 (1999).
    22 Chan, S. L. & Yeo, W. Targeted therapy of hepatocellular carcinoma: present and future. Journal of Gastroenterology and Hepatology 27, 862-872, (2012).
    23 Nagasue, N. et al. Incidence and factors associated with intrahepatic recurrence following resection of hepatocellular carcinoma. Gastroenterology 105, 488-494 (1993).
    24 Llovet, J. M. et al. Design and endpoints of clinical trials in hepatocellular carcinoma. Journal of the National Cancer Institute 100, 698-711, (2008).
    25 Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. The New England Journal of Medicine 359, 378-390, (2008).
    26 Chen, J. et al. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Letters 367, 1-11, (2015).
    27 Gotink, K. J. & Verheul, H. M. W. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13, 1-14, (2010).
    28 Keating, G. M. & Santoro, A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 69, 223-240, (2009).
    29 Capra, M. et al. Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Research 66, 8147-8154, (2006).
    30 Edelman, A. M., Blumenthal, D. K. & Krebs, E. G. Protein serine/threonine kinases. Annual Review of Biochemistry 56, 567-613, (1987).
    31 Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research 64, 7099-7109, (2004).
    32 Liang, Y. et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1alpha inhibition in hepatocellular carcinoma. Hepatology (Baltimore, Md.) 57, 1847-1857, (2013).
    33 Glick, D., Barth, S. & Macleod, K. F. Autophagy: cellular and molecular mechanisms. The Journal of Pathology 221, 3-12, (2010).
    34 Shimizu, S. et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. International journal of Cancer 131, 548-557, (2012).
    35 Chew, V., Toh, H. C. & Abastado, J. P. Immune microenvironment in tumor progression: characteristics and challenges for therapy. Journal of Oncology 2012, 608406, (2012).
    36 Shi, Y. H. et al. Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy 7, 1159-1172, (2011).
    37 Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263-266, (2006).
    38 Zhang, W. et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clinical Cancer Research : an official journal of the American Association for Cancer Research 16, 3420-3430, (2010).
    39 Liu, J., Liu, Y., Meng, L., Liu, K. & Ji, B. Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncology Reports 38, 899-907, (2017).
    40 Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature immunology 10, 29-37, (2009).
    41 Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Review Cancer 12, 252-264, (2012).
    42 Peggs, K. S., Quezada, S. A. & Allison, J. P. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clinical and experimental immunology 157, 9-19, (2009).
    43 Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science (New York, N.Y.) 322, 271-275, 1160062 (2008).
    44 Laurent, S. et al. CTLA-4 expressed by chemoresistant, as well as untreated, myeloid leukaemia cells can be targeted with ligands to induce apoptosis. British Journal of Haematology 136, 597-608, (2007).
    45 Motoshima, T. et al. Sorafenib enhances the antitumor effects of anti-CTLA-4 antibody in a murine cancer model by inhibiting myeloid-derived suppressor cells. Oncology Reports 33, 2947-2953, (2015).
    46 Dong, Y., Sun, Q. & Zhang, X. PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget 8, 2171-2186, 13895 (2017).
    47 Massari, F. et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer treatment reviews 41, 114-121, (2015).
    48 Bally, A. P., Austin, J. W. & Boss, J. M. Genetic and Epigenetic Regulation of PD-1 Expression. Journal of Immunology (Baltimore, Md. : 1950) 196, 2431-2437, (2016).
    49 Amaral, T. & Garbe, C. Acquired resistance mechanisms to immunotherapy. Annals of Translational Medicine 4, 547, (2016).
    50 Amarnath, S. et al. The PDL1-PD1 Axis Converts Human Th1 Cells Into Regulatory T Cells. Science translational medicine 3, 111ra120-111ra120, (2011).
    51 Black, M. et al. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget 7, 10557-10567, (2016).
    52 Chen, J. et al. Sorafenib-resistant hepatocellular carcinoma stratified by phosphorylated ERK activates PD-1 immune checkpoint. Oncotarget 7, 41274-41284, (2016).
    53 Haura, E. B., Turkson, J. & Jove, R. Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nature clinical practice. Oncology 2, 315-324, (2005).
    54 Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature Review Cancer 14, 736-746, (2014).
    55 Lee, H., Pal, S. K., Reckamp, K., Figlin, R. A. & Yu, H. STAT3: A Target to Enhance Antitumor Immune Response. Current topics in microbiology and immunology 344, 41-59, (2011).
    56 Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Review. Immunology 7, 41-51, (2007).
    57 Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39-49 (1999).
    58 Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature medicine 11, 1314-1321, (2005).
    59 Kortylewski, M. et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer cell 15, 114-123, (2009).
    60 Wang, Y., Shen, Y., Wang, S., Shen, Q. & Zhou, X. The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer letters 415, 117-128, (2017).
    61 Austin, J. W., Lu, P., Majumder, P., Ahmed, R. & Boss, J. M. STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. Journal of Immunology (Baltimore, Md. : 1950) 192, 4876-4886, (2014).
    62 Ma, W. et al. RhoE/ROCK2 regulates chemoresistance through NF-kappaB/IL-6/ STAT3 signaling in hepatocellular carcinoma. Oncotarget 7, 41445-41459, (2016).
    63 Han, Z. et al. Silencing of the STAT3 signaling pathway reverses the inherent and induced chemoresistance of human ovarian cancer cells. Biochemical and biophysical research communications 435, 188-194, (2013).
    64 Real, P. J. et al. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21, 7611-7618, (2002).
    65 Salas, S. et al. Correlation between ERK1 and STAT3 expression and chemoresistance in patients with conventional osteosarcoma. BMC Cancer 14, 606, (2014).
    66 Su, J. C. et al. SC-2001 overcomes STAT3-mediated sorafenib resistance through RFX-1/SHP-1 activation in hepatocellular carcinoma. Neoplasia (New York, N.Y.) 16, 595-605, 2014.06.005 (2014).
    67 Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and Cellular Biology 25, 9543-9553, (2005).
    68 Cox, M. A., Kahan, S. M. & Zajac, A. J. Anti-viral CD8 T cells and the cytokines that they love. Virology 435, 157-169, (2013).
    69 Arango Duque, G. & Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in Immunology 5, 491, (2014).
    70 Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nature reviews. Immunology 15, 486-499, (2015).
    71 Kilinc, M. O. et al. Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. Journal of Immunology (Baltimore, Md. : 1950) 177, 6962-6973 (2006).
    72 Zhou, S. L. et al. Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib. Gastroenterology 150, 1646-1658.e1617, (2016).
    73 Wang, Y. et al. Combinatorial immunotherapy of sorafenib and blockade of programmed death-ligand 1 induces effective natural killer cell responses against hepatocellular carcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 36, 1561-1566, (2015).
    74 Chen, Y. et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology (Baltimore, Md.) 61, 1591-1602,(2015).
    75 Chuang, H.-Y., Chang, Y.-F., Liu, R.-S. & Hwang, J.-J. Serial Low Doses of Sorafenib Enhance Therapeutic Efficacy of Adoptive T Cell Therapy in a Murine Model by Improving Tumor Microenvironment. PloS one (2014).

    下載圖示 校內:2023-02-01公開
    校外:2023-02-01公開
    QR CODE