簡易檢索 / 詳目顯示

研究生: 蔡耀慶
Tsai, Yao-Ching
論文名稱: 填充物對異向性裂紋體之影響
指導教授: 宋見春
Sung, Jian-Chuen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 82
中文關鍵詞: 填充物異向性裂紋體
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討二維異向性材料內含一水平裂紋,而裂紋內填入線彈性填充材料之問題,利用二維度異向性線彈性體基本位移場與應力場之Eshelby-Stroh基本公式,推演不完全開裂裂紋體在無窮遠處受力作用時裂紋面反力之積分方程式。針對平面及反平面問題受拉力或剪力作用下,分析裂紋體材料性質為異向性或等向性時之反應,並藉著改變材料性質、線彈性填充材料之彈性係數及填充不同之裂縫長度探討各個參數對應力強度因子之影響。

    摘要……..…………..…………………..………………………I 誌謝……...…………..………………….…………………….. II 目錄………………………….………………………..………III 圖表目錄…………………...………………………………….V 第一章 緒論……………………….……………………………….1 § 1-1 研究動機與文獻回顧………….…………………………1 § 1-2 研究方法與內容簡介……….……………………………3 § 1-3 內容簡介…………………………………………………. 4 第二章 基本公式………………………………………………….5 § 2-1 位移函數與應力函數……………………………………...5 § 2-2 Stroh正交正規關係及矩陣S、H及L…………………..15 § 2-3 異向性反平面問題之基本公式………………………….18 第三章 問題推演…………………………………………………21 § 3-1 問題敘述………………………………………………….21 § 3-2 反平面裂紋體之分析……………………............25 § 3-3 平面內裂紋體之分析…………………..............33 § 3-4 應力強度因子……….………………………………….40 第四章 數值結果與分析…………………………………………46 § 4-1 數值方法………………………………………………….46 § 4-2 數值分析…………………………………………….……52 § 4-3 等向性與異向性材料在反平面問題之探討……….……56 § 4-4 等向性與異向性材料在平面問題之探討………….……64 § 4-5 填充物分段之探討………………………………….……77 第五章 結論…………………………………………………...……78 參考文獻……………………………………………………………....79 自述…………………………………………………………….......82

    【1】Bhargava, R. D. and Radhakrishna, H. C.,“Elliptic Inclusion in Orthotropic Medium,” J. Phys. Soc. Japan, Vol. 19,pp. 396-405,1964.

    【2】Chadwick, P., and Smith, G. D., “Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials,” Adv. Appl. Mech., Vol. 17, pp. 303-376,1977.

    【3】Chen, W. T., “On an Elliptic Elastic Inclusion in an Anisotropic Medium,” Q. J. Mech. Appl. Math., Vol. 20, pp. 307-313,1967.

    【4】Eshelby, J. D., Read, W. T., and Shockley, W., “Anisotropic Elasticity with Applications to Dislocation Theory,” Acta Metall. Vol. 1, pp. 251-259,1953.

    【5】Eshelby, J. D., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. Roy. Soc. London, Vol. A241, pp. 376-396,1957.

    【6】Eshelby, J. D., “The Elastic Field Outside an Ellipsoidal Inclusion,” Proc. Roy. Soc. London, Vol. A252, pp. 561-569,1959.

    【7】Hwu, C. and Ting, T. C. T., “Two-Dimensional Problems of the Anisotropic Elastic Solid with an Elliptic Inclusion,” Q. J. Mech. Appl. Math., Vol. 42, pp. 553-572,1989.

    【8】Hwu, C. and Yen, W. J.,“Green’s Functions of Two-Dimensional Anisotropic Plates Containing an Elliptic Hole,” Int. J. Solids Structures, Vol. 27, pp. 1705-1719,1991.

    【9】Hwu, C. and Yen, W. J., “Plane Problems for Anisotropic Bodies with an Elliptic Hole Subjected to Arbitrary Loadings,” The Chinese Journal of Mechanics, Vol. 8, pp. 123-139,1992.

    【10】Jaswon, M. A., and Bhargava, R. D., “Two-Dimensional Elastic Inclusion Problems,” Proc. Camb. Phil. Soc., Vol. 57, pp. 669-680 ,1961.

    【11】Jones, R. M., Mechanics of Composite Materials, McGrawHill, Washington, D. C. ,1975.

    【12】Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body, Gostekhizdat, Moscow ,1950.

    【13】Stroh, A. N., “Dislocations and Cracks in Anisotropic Elasticity,” Phil. Mag., Vol. 7, pp. 625-646,1958.

    【14】Ting, T. C. T., “Effects of Change of Reference Coordinates on the Stress Analyses of Anisotropic Elastic Materials,” Int. J. Solids Structures, Vol. 18, pp. 139-152,1982.

    【15】Ting, T. C. T., “Some Identities and the Structure of Ni in the Stroh Formalism of Anisotropic Elasticity,” Q. Appl. Math., Vol. 46, pp. 109-120,1988.

    【16】Ting, T. C. T., “Anisotropic Elasticity-Theory and Applications,” Oxford University Press, New York,1996.

    【17】Ting, T. C. T., and Hoang, P. H., “Singularities at the Tip of a Crack Normal to the Interface of an Anisotropic Layered Composite,” Int. J. Solids Structures, Vol. 20, pp. 439-454,1984.

    【18】Voigt, W., Lehrbuch der Kristallphysik, Leipzig, 560,1910.

    【19】Yang, H. C., and Chou, Y. T., “Generalized Plane Problems of an Elliptic Inclusion in an Anisotropic Medium,” J. Appl. Mech., Vol. 44, pp. 437-444,1976.

    【20】Yeh, C. S., Shu, Y. C., and Wu, K. C., “Conservation Laws in Anisotropic Elasticity I. Basic Frame Work,” Proc. Roy. Soc. London, Vol. 443, pp. 139-151,1993a.

    【21】Yeh, C. S., Shu, Y. C., and Wu, K. C., “Conservation Laws in Anisotropic Elasticity II. Extension and Application to Thermoelasticity,” Proc. Roy. Soc. London, Vol. 443, pp. 153-161,1993b.

    【22】結構補強,現代營建雜誌社, Vol.255, pp. 24-28,2001.

    【23】吳昱奇, “裂紋填充物對應力強度因子之影響”,碩士論文,國立成功大學土木工程研究所,2002.

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE