研究生: |
謝麗貞 Hsieh, Li-Chen |
---|---|
論文名稱: |
交通管理減碳策略:可交易式油票系統數學模式之建立 Carbon Reduction Transportation Management Policy: A Mathematical Model of a Tradable Credit System |
指導教授: |
林東盈
Lin, Dung-Ying |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 可交易式油票 、減碳 、交通管理策略 、基因演算法 、化學反應最適演算法 |
外文關鍵詞: | tradable credit, carbon reduction, transportation management policy, Genetic Algorithm, Chemical Reaction Optimization |
相關次數: | 點閱:67 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一套可交易式油票系統,提供政府部門以收取油票之方式改變用路人行為以減低碳排放量。首先,在此套系統中政府部門必須先訂定欲發放給各個用路人之油票數,爾後擬定出一套類似擁擠定價的收費系統,當用路人使用到路網中的擁擠路段時政府便依規定向用路人收取油票。在此套系統下,用路人得以自行決定是否要進入該路網,或者是依政府規定之收取油票方式選擇自己的路徑;用路人甚至可決定不使用自己擁有的油票而將之轉售於他人。本研究將此問題以雙層模式方式作建構,並以基因演算法(Genetic Algorithm)及化學反應最適演算法(Chemical Reaction Optimization)求解以得出在可交易式油票系統下之整體路網表現。結果顯示,透過可交易式油票系統可減少路網中的總排碳量,此結論也可提供政府部門另一項紓解都市交通擁擠之策略。
To reduce the carbon emissions from a transportation network, we investigate a tradable credit system in which government agencies can control the amount of carbon emission by adjusting road users’ travel behavior. In this system, government agencies first issue a certain amount of tradable credits to each potential road user. A toll scheme similar to congestion pricing is then employed to charge road users if they use the links in congested areas. Road users then decide whether to make trips and route choices based on government policies, or they can trade their credits with those who need more. We construct the problem as a bi-level program and develop a Genetic Algorithm (GA) and a new metaheuristic called Chemical Reaction Optimization (CRO) to evaluate the performance of a tradable credit system. The numerical results show that a tradable credit system can reduce the total carbon emissions of a transportation network and suggest an alternative way to alleviate urban traffic congestion.
1. Bard, J. F. (1998). Practical Bilevel Optimization Algorithms and Applications,Kluwer Academic Publishers, Boston MA.
2. Basso, L. J., and Jara-Díaz, S. R. (2012). Integrating congestion pricing, transit subsidies and mode choice. Transportation Research Part A: Policy and Practice, 46(6), 890-900.
3. Boyce, D. E. (1984). Urban transportation network-equilibrium and design models: recent achievements and future prospects. Environment and Planning A, 16(11), 1445-1474.
4. Brownstone, D., Ghosh, A., Golob, T. F., Kazimi, C., and Van Amelsfort, D. (2003). Drivers’ willingness-to-pay to reduce travel time: evidence from the San Diego I-15 congestion pricing project. Transportation Research Part A: Policy and Practice, 37(4), 373-387.
5. Ceylan, H., and Bell, M. G. H. (2005). Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion. Transportation Research Part B: Methodological, 39(2), 169-185.
6. Chen, A., Kim, J., Lee, S., and Kim, Y. (2010). Stochastic multi-objective models for network design problem. Expert Systems with Applications, 37(2), 1608-1619.
7. Chu, X. (1999). Alternative congestion pricing schedules. Regional Science and Urban Economics, 29(6), 697-722.
8. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2), 182-197.
9. Evans. (1992). Road congestion pricing: when is it a good policy? Journal of Transport Economics and Policy, 26 (3), 213-243.
10. Friesz, T. L. (1985). Transportation network equilibrium, design and aggregation: Key developments and research opportunities. Transportation Research Part A: General, 19(5–6), 413-427.
11. Giuliano, G. (1992). An assessment of the political acceptability of congestion pricing. Transportation, 19(4), 335-358.
12. Goh, M. (2002). Congestion management and electronic road pricing in Singapore. Journal of Transport Geography, 10(1), 29-38.
13. Goodwin, P., Dargay, J., and Hanly, M. (2004). Elasticities of Road Traffic and Fuel Consumption with Respect to Price and Income: A Review. Transport Reviews, 24(3), 275-292.
14. Hau, T. D. (1992). Congestion Charging Mechanisms for Roads: An Evaluation of Current Practice: Infrastructure and Urban Development Department. The World Bank.
15. Holland, J. H. (1975). Adaptation in natural and artificial systems. [University of Michigan Press, Ann Arbor.].
16. Jones, P. (1991). Assessing traveler responses to urban road pricing. In T. S. U. Working Paper TSU677, University of Oxford, U.K. (Ed.).
17. Karoonsoontawong, A., and Waller, S. (2006). Dynamic Continuous Network Design Problem: Linear Bilevel Programming and Metaheuristic Approaches. Transportation Research Record: Journal of the Transportation Research Board, 1964(-1), 104-117.
18. Kockelman, K. M., and Kalmanje, S. (2005). Credit-based congestion pricing: a policy proposal and the public’s response. Transportation Research Part A: Policy and Practice, 39(7–9), 671-690.
19. Kockelman, K. M., and Lemp, J. D. (2011). Anticipating new-highway impacts: Opportunities for welfare analysis and credit-based congestion pricing. Transportation Research Part A: Policy and Practice, 45(8), 825-838.
20. Lam, A. Y. S., and Li, V. O. K. (2010). Chemical-Reaction-Inspired Metaheuristic for Optimization. Evolutionary Computation, IEEE Transactions on, 14(3), 381-399.
21. Litman, T. (2011). London Congestion Pricing Implications for Other Cities,Victoria Transport Policy Institute.
22. Magnanti, T. L., and Wong, R. T. (1984). Network Design and Transportation Planning: Models and Algorithms. Transportation Science, 18(1), 1-55.
23. Mirabel, F., and Reymond, M. (2011). Bottleneck congestion pricing and modal split: Redistribution of toll revenue. Transportation Research Part A: Policy and Practice, 45(1), 18-30.
24. Oduguwa, V., and Roy, R. (2002). Bi-level optimisation using genetic algorithm. Paper presented at the Artificial Intelligence Systems, 2002. (ICAIS 2002).
25. Sheffi, Y. (1985). Urban transportation networks: Equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood Cliffs, N.J.
26. Sun, D., Benekohal, R. F., and Waller, S. T. (2006). Bi-level Programming Formulation and Heuristic Solution Approach for Dynamic Traffic Signal Optimization. Computer-Aided Civil and Infrastructure Engineering, 21(5), 321-333.
27. Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. Paper presented at the Proceedings of the 3rd International Conference on Genetic Algorithms.
28. Szeto, W. Y., Wang, Y., and Wong, S. C. (2012). The Chemical Reaction Optimization Approach to Solving the Environmentally Sustainable Network Design Problem. . Paper presented at the The 17th International Conference of Hong Kong Society for Transportation Studies.
29. U.S. Bureau of Public Roads, T. A. M., Washington, D.C. (1964).
30. Von Stackelberg, H. (1952). The Theory of the Market Economy. William Hodge.
31. Wadud, Z. (2011). Personal tradable carbon permits for road transport: Why, why not and who wins? Transportation Research Part A: Policy and Practice, 45(10), 1052-1065.
32. Wang, X., Yang, H., Zhu, D., and Li, C. (2012). Tradable travel credits for congestion management with heterogeneous users. Transportation Research Part E: Logistics and Transportation Review, 48(2), 426-437.
33. Xie, C. (2012). Toward the mitigation of traffic congestion and vehicle emission in transport network development : A multicriterion optimization approach. The university of Texas at Austin, Austin, TX78712.
34. Xie, C., Lin, D.-Y., and Travis Waller, S. (2010). A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies. Transportation Research Part E: Logistics and Transportation Review, 46(3), 295-316.
35. Yang, H., and Bell, M. G. H. (1997). Traffic restraint, road pricing and network equilibrium. Transportation Research Part B: Methodological, 31(4), 303-314.
36. Yang, H., and Bell, M. G. H. (1998). Models and algorithms for road network design: a review and some new developments. Transport Reviews, 18(3), 257-278.
37. Yang, H., and Wang, X. (2011). Managing network mobility with tradable credits. Transportation Research Part B: Methodological, 45(3), 580-594.
38. Yang, J., Zhang, M., He, B., and Yang, C. (2009). Bi-level programming model and hybrid genetic algorithm for flow interception problem with customer choice. Computers & Mathematics with Applications, 57(11-12), 1985-1994.
39. Yin, Y. (2000). Genetic-Algorithms-Based Approach for Bi-level Programming Models. Journal of Transportation Engineering, 126(2), 115-120.