簡易檢索 / 詳目顯示

研究生: 林欣柔
Lin, Hsin-Jou
論文名稱: 反應性濺鍍高A軸取向氮化鈧鋁鑽石薄膜之特性與壓電性質研究
Characterization and piezoelectric properties of reactively sputtered highly A-axis ScAlN thin films on diamond structure
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 109
中文關鍵詞: A軸氮化鋁氮化鈧鑽石表面聲波快速升溫退火
外文關鍵詞: A-axis AlN, ScN, Diamond, SAW device, Rapid Thermal Annealing
相關次數: 點閱:96下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊的發展,應用於射頻頻段的表面聲波濾波器朝向高頻、寬頻寬、高散熱發展,由於傳統使用的單晶表面聲波基板材料,其波速低、散熱差,鑽石基板具有最高的表面波速及優良散熱性質,結合C軸取向氮化鋁壓電薄膜做為高頻表面聲波基板已被廣泛討論及發表。氮化鋁壓電薄膜其優點為居禮溫度極高、散熱佳、波速快,但缺點為壓電係數過低。在氮化鋁薄膜內摻雜鈧後,由於薄膜內結晶結構改變,使得薄膜壓電係數增加。壓電薄膜之結晶成長方向提供不同表面聲波性質,並進而影響薄膜壓電特性的主要因素,近年來發展出A軸取向的氮化鋁薄膜可激發兩種不同型態的波,因此具有優異的表面聲波特性,使A軸氮化鋁薄膜既可以應用於通訊產業中也在生醫方面極具發展性。本研究主要成長A軸取向氮化鈧鋁薄膜於鑽石基板,結合多種材料特點,形成一創新複合高溫壓電材料。
    本實驗第一部份,使用反應性濺鍍的方式濺鍍A軸取向氮化鋁薄膜於鑽石基板上,研究製程條件與薄膜特性之關係。實驗結果顯示:A軸從優取向之氮化鋁薄膜具有比C軸從優取向之氮化鋁薄膜具有更平坦的表面形貌,且壓電係數為3.31 pC/N,為C軸氮化鋁 (1.8 pC/N)約2倍。並使用快速升溫退火製程達到使晶粒成長、消除缺陷以有效改善薄膜結晶性,進而提升薄膜的壓電性質。本實驗第二部份,使用雙靶共鍍濺鍍A軸取向氮化鈧鋁薄膜於鑽石基板上。研究歸納出高A軸從優取向氮化鈧鋁薄膜之低溫製程參數,其薄膜壓電係數值至4.93 pC/N,並利用快速退火機制提升薄膜結晶性及壓電係數至8.1 pC/N,為C軸氮化鋁 (1.8 pC/N)約4.5倍可作為高溫使用新型高壓電係數材料。

    With the development of wireless communication system, the surface acoustic wave devices (SAW) are expected to use in high frequency, wide band gap, and high thermal conductivity. Among all substrate materials of SAW devices, diamond substrate has the highest acoustic wave velocity and good thermal conductivity, which can improve the disadvantages of SAW devices. Diamond coupled with c-axis Aluminum Nitride (AlN) thin films have been widely studied and published. Wurtzite AlN thin films have been widely used in SAW devices, because it has high phase velocity, high thermal conductivity and the highest Curie temperature, but the piezoelectric coefficient d33 of AlN is too low. Different orientations of piezoelectric films form different surface acoustic properties. (100) AlN films can provide two different acoustic waves and better surface acoustic wave properties. (100) AlN is a promising material in communication systems and biosensor. Doping Sc in AlN films enhance the piezoelectric coefficient because films structure change. From our research, we prepared highly a-axis ScAlN piezoelectric thin films on diamond substrate to form innovative piezoelectric material.
    The first part in our experiment, we use DC sputtering system to prepare a-axis AlN on diamond substrate and analyze characterization of different oriented AlN films. The results shows that a-axis AlN has better surface morphology and piezoelectric coefficient up to 3.31 pC/N, which is near twice of c-axis AlN (1.8 pC/N) . The RTA process improves crystalline and piezoelectric coefficient. The second part in our experiment, we use co-sputtering system to prepare a-axis ScAlN films on diamond substrate and piezoelectric coefficient is 4.93 pC/N. The RTA process improves crystalline and piezoelectric coefficient after annealing at 300 ℃ without N2. From our research, we conclude a preliminary low-temperature experimental process to enhance the piezoelectric properties of ScAlN thin films up to 8.1 pC/N which is nearly four times larger than pure AlN. The result is expected to boost the properties of surface acoustic wave filter devices.

    第一章 緒論.................................................1 1-1前言..................................................1 1-2研究動機...............................................1 第二章 文獻回顧............................................13 2-1電漿的產生............................................13 2-2濺鍍.................................................15 2-2-1反應式濺鍍........................................15 2-2-2射頻磁控濺鍍......................................21 2-3薄膜的成核與成長.......................................21 2-4氮化鋁薄膜............................................24 2-4-1氮化鋁的基本特性...................................24 2-4-2氮化鋁的壓電效應...................................27 2-5具有高度從優取向之氮化鋁薄膜及其應用.....................29 2-6高A軸取向氮化鋁薄膜....................................37 2-7反應性濺鍍製備氮化鈧鋁薄膜..............................39 2-8快速升溫退火製程.......................................41 2-9快速升溫退火製程對薄膜結晶性之影響.......................43 第三章 實驗方法與步驟.......................................44 3-1實驗流程圖............................................44 3-2實驗的材料............................................45 3-3實驗設備..............................................45 3-4濺鍍的步驟與條件.......................................48 3-4-1基材前處理........................................48 3-4-2濺鍍流程..........................................48 3-4-3快速升溫退火製程...................................48 3-5鍍層的分析............................................50 3-5-1濺鍍速率的測量....................................50 3-5-2X-ray 繞射分析....................................50 3-5-3 微結構觀察.......................................51 3-5-4橫截面微結構觀察...................................51 3-5-5成份與化學鍵結分析.................................51 3-5-6薄膜壓電係數分析...................................52 第四章 結果與討論...........................................54 4-1製備具有高A軸取向(100)氮化鋁薄膜於鑽石薄膜基板............54 4-1-1工作壓力對於濺鍍高A軸取向氮化鋁之影響................54 4-1-2工作距離對於濺鍍高A軸取向氮化鋁之影響................61 4-2(100)與(002)氮化鋁鑽石薄膜微結構及壓電性質比較...........65 4-2-1XRD微結構分析.....................................65 4-2-2表面微結構及粗糙度分析.............................65 4-2-3橫結構微結構分析...................................69 4-2-4(100)氮化鋁薄膜成長機制............................69 4-2-5不同從優取向氮化鋁薄膜之壓電性質分析.................77 4-3快速升溫退火製程對於A軸氮化鋁鑽石薄膜壓電效應之影響........79 4-3-1化學成份分析......................................79 4-3-2表面粗糙度........................................79 4-3-3XRD微結構分析.....................................79 4-3-4經快速升溫退火製程之氮化鋁薄膜壓電係數分析............83 4-3-5化學鍵結分析......................................85 4-4高A軸取向氮化鈧鋁鑽石薄膜之特性與壓電性質研究.............87 4-4-1反應濺鍍速率......................................87 4-4-2 XRD微結構分析....................................87 4-4-3化學成份分析......................................89 4-4-4橫截面微結構分析...................................89 4-4-5表面粗糙度........................................94 4-4-6氮化鈧鋁薄膜壓電係數...............................94 4-4-7快速升溫退火製程對氮化鈧鋁薄膜壓電係數的影響..........97 第五章 結論...............................................102 參考文獻..................................................104

    [1] D. Liufu and K. C. Kao, "Piezoelectric, dielectric, and interfacial properties of aluminum nitride films," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 16, pp. 2360-2366, (1998).
    [2] T. Moriizumi, Y. Unno, and S. Shiokawa, "New Sensor in Liquid Using Leaky SAW," IEEE 1987 Ultrasonics Symposium, pp. 579-582 (1987).
    [3] S. Wu, R. Ro, Z.-X. Lin, and M.-S. Lee, "Rayleigh surface acoustic wave modes of interdigital transducer/(100) AlN/(111) diamond," Journal of Applied Physics, vol. 104, pp. 064919-4, (2008).
    [4] P. Kirsch, M. B. Assouar, O. Elmazria, V. Mortet, and P. Alnot, "5 GHz surface acoustic wave devices based on aluminum nitride/diamond layered structure realized using electron beam lithography," Applied Physics Letters, vol. 88, pp. 223504 - 223504-3 (2006).
    [5] S. Wu, R. Ro, Z.-X. Lin, and M.-S. Lee, "High velocity shear horizontal surface acoustic wave modes of interdigital transducer/(100) AlN/(111) diamond," Applied Physics Letters, vol. 94, pp. 092903 - 092903-2 (2009).
    [6] S. J. Zhang, R. Xia, L. Lebrun, D. Anderson, and T. R. Shrout, "Piezoelectric materials for high power, high temperature applications," Materials Letters, vol. 59, pp. 3471-3475 (2005).
    [7] E. Ansorge, S. Schimpf, S. Hirsch, J. Sauerwald, H. Fritze, and B. Schmidt, "Evaluation of langasite (La3Ga5SiO14) as a material for high temperature microsystems," Sensors and Actuators a-Physical, vol. 130, pp. 393-396 (2006).
    [8] M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering," Advanced Materials, vol. 21, pp. 593 (2009).
    [9] A. Dalcorso, M. Posternak, R. Resta, and A. Baldereschi, "Ab-Initio Study of Piezoelectricity and Spontaneous Polarization in ZnO," Physical Review B, vol. 50, pp. 10715-10721 (1994).
    [10] N. Takeuchi, "First-principles calculations of the ground-state properties and stability of ScN," Physical Review B, vol. 65, pp. 045204 (2002).
    [11] N. Farrer and L. Bellaiche, "Properties of hexagonal ScN versus wurtzite GaN and InN," Physical Review B, vol. 66, pp. 201203 (2002).
    [12] V. Ranjan, S. Bin-Omran, D. Sichuga, R. S. Nichols, L. Bellaiche, and A. Alsaad, "Properties of GaN∕ScN and InN∕ScN superlattices from first principles," Physical Review B, vol. 72, pp. 085315 (2005).
    [13] A. Alsaad and A. Ahmad, "Piezoelectricity of ordered (ScxGa1-xN) alloys from first principles," European Physical Journal B, vol. 54, pp. 151-156 (2006).
    [14] J. P. Kar, S. Mukherjee, G. Bose, S. Tuli, and J. M. Myoung, "Impact of post-deposition annealing on surface, bulk and interface properties of RF sputtered AlN films," Materials Science and Technology, vol. 25, pp. 1023-1027 (2009).
    [15] L. Vergara, J. Olivares, E. Iborra, M. Clement, A. Sanz-Hervas, and J. Sangrador, "Effect of rapid thermal annealing on the crystal quality and the piezoelectric response of polycrystalline AlN films," Thin Solid Films, vol. 515, pp. 1814-1818 (2006).
    [16] U. Mazur and A. C. Cleary, "Infrared and tunneling spectroscopy study of AlN films prepared by ion-beam deposition," Journal of Physical Chemistry; (USA); Journal Volume: 94:1, pp. 189-194 (1990).
    [17] 楊錦章,“基本濺鍍電漿”,電子發展月刊,pp.68 (1983).
    [18] S. M. Rossnagel, "Handbook of Plasma Processing Technology", Noyes Publications, Park Ridge, New Jersey, USA (1989).
    [19] L. Davis, "Properties of transparent conducting oxides deposited at room temperature," Thin Solid Films, vol. 236, pp. 1-5 (1993).
    [20] K. N. Tu, J. W. Mayer and L. C. Feldman, Electronic Thin Film Science, Macmillan Publishing Company, New York, (1992).
    [21] B. Aspar, R. Rodriguez-Clemente, A. Figueras, B. Armas, and C. Combescure, "Influence of the experimental conditions on the morphology of CVD AIN films," Journal of Crystal Growth, vol. 129, pp. 56-66 (1993).
    [22] J. S. Cherng and D. S. Chang, "Effects of pulse parameters on the pulsed-DC reactive sputtering of AlN thin films," Vacuum, vol. 84, pp. 653-656 (2009).
    [23] M. Ohring, "The Materials Science of Thin films, " Academic Press, (2001)
    [24] E. Ruiz, S. Alvarez, and P. Alemany, "Electronic structure and properties of AlN," Physical Review B, vol. 49, pp. 7115-7123 (1994).
    [25] 嚴豐明,"高熱傳導率氮化鋁基版材料之簡介",材料與社會71 pp.45(1994).
    [26] X. H. Xu, H. S. Wu, C. J. Zhang, and Z. H. Jin, "Morphological properties of AIN piezoelectric thin films deposited by DC reactive magnetron sputtering," Thin Solid Films, vol. 388, pp. 62-67 (2001).
    [27] P. Curie and J. Curie, Bull. Soc. Min. de France, Vol. 3, p. 90 (1880).
    [28] 吳朗,“電子陶瓷-壓電”,全欣圖書公司,(1991).
    [29] S. Wu, Y. C. Chen, and Y. S. Chang, "Characterization of AlN films on Y-128 degrees LiNbO3 by surface acoustic wave measurement," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 4605-4608 (2002).
    [30] M. Akiyama, C. N. Xu, K. Nonaka, K. Shobu, and T. Watanabe, "Statistical approach for optimizing sputtering conditions of highly oriented aluminum nitride thin films," Thin Solid Films, vol. 315, pp. 62-65 (1998).
    [31] R. S. Naik, R. Reif, J. J. Lutsky, and C. G. Sodini, "Low-temperature deposition of highly textured aluminum nitride by direct current magnetron sputtering for applications in thin-film resonators," Journal of the Electrochemical Society, vol. 146, pp. 691-696 (1999).
    [32] W. M. Yim, E. J. Stofko, Zanzucch.Pj, J. I. Pankove, Ettenber.M, and S. L. Gilbert, "Epitaxially Grown AIN and its Optical Band Gap," Journal of Applied Physics, vol. 44, pp. 292-296 (1973).
    [33] M. Morita, K. Tsubouchi, and N. Mikoshiba, "Optical-Absorption And Cathodoluminescence of Epitaxial Aluminum Nitride Films," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 21, pp. 1102-1103 (1982).
    [34] S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda, et al., "Reactive Molecular-Beam Epitaxy of Aluminum Nitride," Journal of Vacuum Science & Technology, vol. 16, pp. 990-993 (1979).
    [35] M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, and Y. Ide, "Control of preferential orientation of AlN films prepared by the reactive sputtering method," Thin Solid Films, vol. 316, pp. 152-157 (1998).
    [36] R. M. White and F. W. Voltmer, "Direct Piezoelectric Coupling to Surface Elastic Waves," Applied Physics Letters, vol. 7, pp. 314 (1965).
    [37] Y. Gurbuz, O. Esame, I. Tekin, W. P. Kang, and J. L. Davidson, "Diamond semiconductor technology for RF device applications," Solid-State Electronics, vol. 49, pp. 1055-1070 (2005).
    [38] V. Mortet, O. Elmazria, M. Nesladek, J. D'Haen, G. Vanhoyland, M. Elhakiki, et al., "Study of aluminium nitride/freestanding diamond surface acoustic waves filters," Diamond and Related Materials, vol. 12, pp. 723-727 (2003).
    [39] S. Fujii and C. Y. Jian, "High-Frequency SAW Filters Based on Diamond Films," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 59, pp. 2758-2764 (2012).
    [40] J. Zhu, "Programmable Surface Acoustic Wave (SAW) filter, " United State Patent, US 6,541,893,B2, (2003).
    [41] Yasar Gurbuz, Onur Esame, Ibrahim Tekin, Weng P. Kang, Jimmy L. Davidson, “Diamond semiconductor technology for RF device applications” Solid-State Electron. Vol. 49, pp.1055 (2005).
    [42] K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. Ohtani, R. Beresford, "Demonstration of a silicon field-effect transistor using AlN as the gate Dielectric” Appl. Phys. Lett. 66 (23), pp. 3179 (1995).
    [43] A. Tanaka, T. Yanagitani, M. Matsukawa, and Y. Watanabe, "Propagation characteristics of shear horizontal surface acoustic waves in (1120) ZnO film/silica glass substrate structures," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 55, pp. 2709-2713 9 (2008).
    [44] K. Nakamura, T. Shoji, and H. B. Kang, "ZnO film growth on (01(1)over-bar2)LiTaO3 by electron cyclotron resonance-assisted molecular beam epitaxy and determination of its polarity," Japanese Journal of Applied Physics Part 2-Letters, vol. 39, pp. L534-L536 (2000).
    [45] Y. V. Gulyaev, "Electroacoustic Surface Waves in Solids," Jetp Letters-Ussr, vol. 9, pp. 37 (1969).
    [46] F. S. Hickernell, "Shear horizontal BG surface acoustic waves on piezoelectrics: A historical note," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 52, pp. 809-811 (2005).
    [47] S. Wu, R. Ro, and Z.-X. Lin, "Rayleigh surface acoustic wave modes of (100) ZnO films on (111) diamond," Applied Physics Letters, vol. 94 (2009).
    [48] S. Wu, R. Ro, Z.-X. Lin, and M.-S. Lee, "High velocity shear horizontal surface acoustic wave modes of interdigital transducer/(100) AlN/(111) diamond," Applied Physics Letters, vol. 94, pp. 092903 (2009).
    [49] M. Akiyama, K. Kano, and A. Teshigahara, "Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films," Applied Physics Letters, vol. 95, pp. 162107 (2009).
    [50] W. R. L. Lambrecht, "Electronic structure and optical spectra of the semimetal ScAs and of the indirect-band-gap semiconductors ScN and GdN," Physical Review B, vol. 62, pp. 13538-13545 (2000).
    [51] D. Gall, M. Städele, K. Järrendahl, I. Petrov, P. Desjardins, R. T. Haasch, et al., "Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations," Physical Review B, vol. 63, pp. 125119 (2001).
    [52] C. Stampfl, W. Mannstadt, R. Asahi, and A. J. Freeman, "Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations," Physical Review B, vol. 63, pp. 155106 (2001).
    [53] H. A. Al-Brithen, A. R. Smith, and D. Gall, "Surface and bulk electronic structure of ScN(001) investigated by scanning tunneling microscopy/spectroscopy and optical absorption spectroscopy," Physical Review B, vol. 70, pp. 045303 (2004).
    [54] D. Gall, I. Petrov, N. Hellgren, L. Hultman, J. E. Sundgren, and J. E. Greene, "Growth of poly- and single-crystal ScN on MgO (001): Role of low-energy N-2(+) irradiation in determining texture, microstructure evolution, and mechanical properties," Journal of Applied Physics, vol. 84, pp. 6034-6041 (1998).
    [55] V. Ranjan, L. Bellaiche, and E. J. Walter, "Strained hexagonal ScN: A material with unusual structural and optical properties," Physical Review Letters, vol. 90, pp. 2576021 (2003).
    [56] F. Tasnadi, B. Alling, C. Hoeglund, G. Wingqvist, J. Birch, L. Hultman, et al., "Origin of the Anomalous Piezoelectric Response in Wurtzite ScxAl1-xN Alloys," Physical Review Letters, vol. 104, pp. 137601 (2010).
    [57] C. Hoglund, "Growth and Phase Satability Studied of Epitalial Sc-Al-N and Ti-Al-N Thin films," Linkoping Unversity (2010).
    [58] R. Matloub, A. Artieda, C. Sandu, E. Milyutin, and P. Muralt, "Electromechanical properties of Al0.9Sc0.1N thin films evaluated at 2.5 GHz film bulk acoustic resonators," Applied Physics Letters, vol. 99, pp. 092903 (2011).
    [59] R. Deng, S. R. Evans, and D. Gall, "Bandgap in Al1-xScxN," Applied Physics Letters, vol. 102, pp. 112103 (2013).
    [60] J. P. Kar, G. Bose, and S. Tuli, "Influence of rapid thermal annealing on morphological and electrical properties of RF sputtered AlN films," Materials Science in Semiconductor Processing, vol. 8, pp. 646-651 (2005).
    [61] B. Liu, J. Gao, K. M. Wu, and C. Liu, "Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy," Solid State Communications, vol. 149, pp. 715-717 (2009).
    [62] 許如宏, 林鶴南, “原子力顯微術於奈米加工之應用”物理雙月刊(廿五卷五期)pp.620 (2003)
    [63] H. E. Cheng, T. C. Lin, and W. C. Chen, "Preparation of (002) oriented AlN thin films by mid frequency reactive sputtering technique," Thin Solid Films, vol. 425, pp. 85-89 (2003).
    [64] B. Wang, Y. N. Zhao, and Z. He, "The effects of deposition parameters on the crystallographic orientation of AlN films prepared by RF reactive sputtering," Vacuum, vol. 48, pp. 427-429 (1997).
    [65] J.-H. Song, J.-L. Huang, S. Wu, S.-C. Wang, J.-L. Ruan, and D.-F. Lii, "Surface acoustic wave device properties of (B, Al)N films on 128 degrees Y-X LiNbO3 substrate," Applied Surface Science, vol. 256, pp. 7156-7159 (2010).
    [66] Y. Okada and Y. Tokumaru, "Precise Determination Of Lattice-Parameter And Thermal-Expansion Coefficient Of Silicon Betweeen 300-K And 1500-K," Journal of Applied Physics, vol. 56, pp. 314-320 (1984).
    [67] W. M. Yim and R. J. Paff, "Thermal-Expansion of AlN, Sapphire, And Silicon," Journal of Applied Physics, vol. 45, pp. 1456-1457 (1974).
    [68] V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, and E. A. Fitzgerald, "Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates," Journal of Applied Physics, vol. 93, pp. 3859-3865 (2003).
    [69] R. Farrell, V. R. Pagan, A. Kabulski, S. Kuchibhatl, J. Harman, K. R. Kasarla, et al., "High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films," NETL-TPR-2009; TRN: US2011192 (2008).
    [70] W. T. Lim, B. K. Son, D. H. Kang, and C. H. Lee, "Structural properties of AlN films grown on Si, Ru/Si and ZnO/Si substrates," Thin Solid Films, vol. 382, pp. 56-60 (2001).
    [71] Z. Y. Fan, G. Rong, N. Newman, and D. J. Smith, "Defect annihilation in AlN thin films by ultrahigh temperature processing," Applied Physics Letters, vol. 76, pp. 1839-1841 (2000).

    下載圖示 校內:2015-08-05公開
    校外:2015-08-05公開
    QR CODE