簡易檢索 / 詳目顯示

研究生: 賴世宗
Lai, Shih-Tsung
論文名稱: 利用兩階段最小平方演算法進行連續含時延系統之鑑別
Identification of Continuous Delayed Systems Using Two-Stage Least-Squares Algorithms
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 104
中文關鍵詞: 負載擾動多重積分脈波信號最小平方演算法
外文關鍵詞: Load disturbance, Least-squares algorithms, Pulse signal, Multiple-integrals
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在與系統鑑別相關的研究中,往往要求鑑別時系統的起始狀態為恆態並且不能有負載擾動發生。這些要求雖然可以簡化鑑別理論的推導,但也造成實際應用上的困難。本論文即利用多重積分和二次最小平方演算的原理,發展出能解決此實用問題的鑑別方法。
    對於任意階次的系統微分方程式而言,因為狀態的微分量難以量測,故將之積分多次而得到系統的多重積分式。由階梯信號、斜坡信號以及正弦信號,加以線性組合,便可衍生出多種常用之脈波信號。所謂「兩階段最小平方演算法」,即是將系統的脈波響應分成兩部分,分別利用多重積分與最小平方演算法來求解模式參數,即可有效排除非零起始值與未知負載擾動的影響。
    最後,經由廣泛的模擬研究以及溫度控制系統實驗證實,本方法對於不同動態系統,均能有效排除負載擾動與非恆態起始狀態的影響,而得到滿意的鑑別結果。

    In the researches related to system identification, it is often required that the system be at steady state initially and no load disturbance occurs during the identification test. Although simplifying the derivation of the identification theory, these requirements could cause practical difficulties in applications. In this thesis, an identification method is developed to resolve such difficulties based on multiple integrations and the two-stage least-squares algorithms.

    For a system differential equation of arbitrary order, we propose the multiple-integral transform of the equation because differentials of the states are inaccessible to measurement. Combining step, ramp, or sinusoidal signals can produce commonly used pulse signals. The so-called “two-stage least-squares algorithms” could eliminate the effects of nonzero initial conditions and unknown load disturbances by dividing the output response into two stages, each of which is dealt with by multiple integrations and least-squares algorithms.

    Finally, an extensive simulation and experimental study verifies that the developed method could yield satisfactory identification results for a wide variety of process dynamics and eliminate the effects of load disturbances and unsteady initial states.

    中文摘要 英文摘要 表目錄 i 圖目錄 ii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 章節與組織 15 第二章 多重積分鑑別之理論推導 16 2.1 簡介 16 2.2 階梯輸入訊號 18 2.3 斜坡輸入訊號 24 2.4 正弦輸入訊號 26 第三章 兩階段最小平方演算法 29 3.1 簡介 29 3.2 矩形脈波輸入訊號 30 3.3 斜坡脈波輸入訊號 35 3.4 三角脈波輸入訊號 38 3.5 半正弦脈波輸入訊號 40 第四章 脈波應答模擬研究 43 4.1 與文獻方法的比較 43 4.2 二階時延系統鑑別模擬研究 49 4.3 三階時延系統鑑別模擬研究 52 4.4 模式簡化模擬研究 55 4.5 時變負載擾動之模擬研究 58 第五章 溫度控制實驗 61 5.1 簡介 61 5.2 溫度校正實驗 66 5.3 階梯應答實驗與鑑別結果 69 5.4 脈波應答實驗與鑑別結果 75 第六章 討論 79 6.1 脈波時間寬度之影響 79 6.2 系統時延之選擇 81 6.3 有益變數矩陣之影響 83 第七章 結論與未來展望 85 參考文獻 86 附錄A 階梯應答公式推導之詳細過程 89 附錄B 斜坡應答公式推導之詳細過程 96 附錄C 正弦應答公式推導之詳細過程 100

    [1] Curtis, J. D., Process Control Instrumentation Technology, John Wiley and Sons Inc. : New York (1988).

    [2] Donald, C. R., Process Systems Analysis and Control, Mc-Graw Hill : New York (1991).

    [3] Greg, S. F., Process Control Systems, Mc-Graw Hill : New York (1988).

    [4] Hsia, T. C., System Identification : Least-Squares Methods, Lexington Books : Toronto (1977).

    [5] Ham, T. W. and Y. H. Kim, “Process Identification Using Pulse Response and Proportional-Integral-Derivative Controller Tuning with Combined Guidelines,” Ind. Eng. Chem. Res., 37, 482 (1998).

    [6] Jang, D., Y. H. Kim and K. S. Hwang, “Process Identification for Second-Order Plus Dead Time Model Using Pulse Input,” SICE, 113, 66 (2001).

    [7] Liu, C. L., Introduction to Combinatorial Mathematics, Mc-Graw Hill : New York (2000).

    [8] Marlin, T. E., Process Control, Mc-Graw Hill : New York (2000).

    [9] Mohan, B. M. and K. B. Datta, “Identification via Fourier Series for a Class of Lumped and Distributed Parameter Systems,” IEEE Trans. Circuits and Sys., 36, 1454 (1989).

    [10] Mamat, R. and P. J. Fleming, “Method for On-line Identification of a First Order plus Dead-time Process Control,” Electronics Letters, 31, 1297 (1995).

    [11] Nishikawa, Y., N. Sannomiya, T. Ohta and H. Tanaka, “A Method for Auto-tuning of PID Control Parameters,” Automatica, 20, 321 (1984).

    [12] Pintelon, R. and J. Schoukens, “Real-Time Integration and Differentiation of Analog Signals by Means of Digital Filtering,” IEEE Trans. Instrumentation and Measurement, 39, 923 (1990).

    [13] Rake, H., “Step Response and Frequency Response Methods,” Automatica, 16, 519 (1980).

    [14] Rangaiah, G. P. and P. R. Krishnaswamy, “Estimating Second- Order plus Dead Time Model Parameters,” Ind. Eng. Chem. Res., 33, 1867 (1994).

    [15] Rangaiah, G. P. and P. R. Krishnaswamy, “Estimating Second- Order plus Dead Time Parameters from Underdamped Process Transients,” Chem. Eng. Scie., 55, 1149 (1996).

    [16] Smith, C., Digital Computer Process Control, Intext Education Publishers : Scranton (1972)

    [17] Sung, S. W., I. B. Lee and B. K. Lee, “On-line Process Identification and Automatic Tuning Method for PID Controllers,” Chem. Eng. Scie., 53, 1847 (1998).

    [18] Sagara, S. and Z. Y. Zhao, “Numerical Intergration Approach to On-line Identification of Continuous-time Systems,” Automatica, 26, 63 (1990).

    [19] Unbehauen, H. and G. P. Rao, “Continuous-time Approaches to System Identification --- A Survey,” Automatica, 26, 23 (1990).

    [20] William L. L., Essentials of Process Control, Mc-Graw Hill : New York (1997).

    [21] Wilson, S. S. and C. L. Carnal, “System Identification with Disturbances,” System Theory, Proceedings of the 26th Southeastern Symposium on , 20-22, pp.502 –506 (1994).

    [22] Wang, Q. G. and Y. Zhang, “Robust Identification of Continuous Systems with Dead-time from Step Responses,” Automatica, 37, 377 (2001).

    [23] Ziegler, J. and N. Nichols, “Optimum Settings for Automatic Controllers,” Trans. ASME, 64, 759 (1942)

    [24] 韓曾晉, “適應控制系統”, 科技圖書(1992)

    下載圖示 校內:立即公開
    校外:2003-06-25公開
    QR CODE