簡易檢索 / 詳目顯示

研究生: 沈柏伸
Shen, Po-shen
論文名稱: 表面態對能帶彎曲的影響
Effect of Surface states on the Band Bending
指導教授: 盧炎田
Lu, Yan-ten
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 58
中文關鍵詞: 表面態
外文關鍵詞: surface states
相關次數: 點閱:47下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體表面附近載子的物理特性對於半導體元件應用而言已經成為重要的研究課題了。由於在半導體表面一些能態的存在,使得表面附近載子重新分布產生了能帶的彎曲。本論文以高斯分布的表面態模型,探討能帶的彎曲和表面態的密度、分佈寬度以及半導體摻雜的濃度、溫度等的關係。當表面態密度高的時候(> ),表面上的費米能階被固定在表面態上,產生釘紥的現象。若在摻雜層和表面之間加入一層未摻雜層(SIN結構),我們也研究未摻雜層厚度影響能帶的彎曲。未來,我們將以此為基礎繼續探討在光照的情況下表面載子的動力行為。

    The dynamical behavior of carriers near the surface of a semiconductor had been an important issue in various applications of semiconductor devices. Some evanescent states may appear at the semiconductor surface. These surface states cause charge re-arrangement, and render the band-bending. In this thesis, we assumed a model of Gaussian distributive surface state within the band gap to study the band bending as functions of surface state density, distribution width, the doping concentration, and temperature. When the surface-state density is larger than , the Fermi-level on the surface is pinned at the energy of surface state.
    Introducing an intrinsic layer between the surface and the doped semiconductor to form the SIN structure, we can further study the effect of the intrinsic layer width to the band-bending. This preliminary study sets the scenario for future investigations on carrier dynamics under luminescence.

    Chapter 1 Introduction 1 §1.1 Properties of semiconductor 2 §1.2 Density of states and carrier statistics 3 §1.3 Depletion layer near semiconductor surface 3 §1.4 Effects of surface 4 §1.5 Illumination effects on semiconductor surfaces 5 Chapter 2 Theorem 7 §2.1 Density of states (DOS) 7 §2.2 Filling of electronic states : Fermi-Dirac distribution 12 §2.3 Bulk chemical potential 18 §2.4 Surface states 23 §2.5 Band bending with presence of surface states 26 Chapter 3 Result and discussion 30 §3.1 Effect of temperature and doping concnetration 30 §3.2 Effect of the strength of surface density 35 §3.3 Effect of the width of Gaussian distribution 38 §3.4 Effect of existence of intrinsic layer (thickness of 100, 200, 300, 400, 500 Å) 50 Chapter 4 Summary 56

    A. M. Cowley and S. M. Sze, J. Appl. Phys. 36, 3212(1965).
    Y. Shapira, L. J. Brillson, and A. Heller, Phys. Rev. B 29, 6824(1984).
    R. Haight and J. Boker, Phys. Rev. Lett. 56, 2846(1986).
    R. E. Viturro, M. L. Slade, and L. J. Brillson, Phys. Rev. Lett. 57, 487(1986).
    P. D. C. King et al., Appl. Phys. Lett. 91, 092101(2007).
    W. E. Spicer, I. Lindau, P, Skeath, and C. Y. Su, J. Vac. Sci. Technol. 17, 1019(1980).
    W. E. Spicer, Z. Lilienthal-Weber, E. R. Weber, N. Newman, T. Kendelewicz, R.Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Sci. Technol. B 6, 1245(1988).
    Richard L. Burden and J. Douglas Faires, Numerical Analysis (7th ed).
    (Brooks/Cole, US, 2001)
    W. E. Meyerhof: Phys. Rev. 71, 727 (1947)
    Charles Kittel, Introduction to Solid State Physics (8th ed). (Wiley, USA, 2005).
    Peter Y. Yu and Manuel Cardona, Fundamentals of semiconductors : Physics and Materials Properties (3rd ed). (Springer, USA, 2005).
    H. Shen, M. Dutta, R. Lux, W. Buchwald, and L. Fotiadis, Appl. Phys. Lett. 59, 321-323(1991).
    H. Shen, M. Dutta, L. Fotiadis, P. G. Newman, R. Moerkirk, W. H. Chang, and R. N. Sacks, Appl. Phys. Lett. 57, 2118-2120(1990).
    X. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, Appl. Phys. Lett. 58, 260-262(1991).

    下載圖示 校內:2010-08-18公開
    校外:2010-08-18公開
    QR CODE