簡易檢索 / 詳目顯示

研究生: 謝明哲
Hsieh, Ming-Che
論文名稱: 醫療級鈦六鋁四釩表面仿生性改質對細胞親和性之影響
The Effects of Biomimetic Surface Modification of Medical Ti6Al4V Alloy on Cytocompatibility
指導教授: 王清正
Wang, Ching-Cheng
共同指導教授: 李澤民
Lee, Tzer-Min
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 121
中文關鍵詞: 仿生性改質奈米級粗糙度細胞黏附力仿生性塗層
外文關鍵詞: Biomimetic modification, Nanometric roughness, Cell adhesion force, Biomimetic coating
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫材料的仿生性改質為目前的主要研究之一,因此奈米級粗糙度及仿生性的塗層可說是目前研究的重點,本論文主要探討三個部分,第一個部分,探討鈦六鋁四釩合金奈米級粗糙度的差異對於表面特性及細胞的反應,以機械研磨及濕式拋光方式對鈦合金表面進行奈米級粗糙度的製備,粗糙度的Ra value 介於2.75~ 30.34 nm,並且使用人類類骨細細胞及纖維細胞評估生醫材料的生物相容性。實驗的方法包含材料表面性質測試,如奈米級表面粗糙度量測、表面型態、濕潤性及表面化學組成分析,生物相容性測試包含細胞增生、細胞型態,以及免疫螢光染色觀察細胞的骨架及貼附情形。第二個部分,利用精確及敏銳的細胞刮取儀評估細胞的黏附力表現,此方法可正確的定量細胞與基材之間的黏附強度,並與表面特性做討論以了解影響黏附力的因素與關係。第三個部分,藉由奈米級表面及仿生性的塗層促進材料表面的親和性,分別比較四種不同前處理、奈米級粗糙度表面、鈣磷塗層,膠原蛋白塗層及鈣磷/膠原蛋白複合塗層的細胞表現,實驗的方法包含仿生塗層的製備、表面塗層型態觀察、成分分析、細胞增生及型態觀察。
    研究結果顯示,奈米級粗糙度會造成表面性質改變,包含表面形態、親疏水性、兩性氫氧基的含量百分比,以及表面蛋白質的吸附,也因此進而影響到纖維母細胞和骨母細胞的生長行為,包含細胞型態,細胞黏附力,細胞增殖,及細胞黏附蛋白的表現。而在仿生塗層的製備上,利用簡單且有效率的方式成功製備了均勻的塗層,也確實證實了仿生性塗層能促進細胞的親和性表現。實驗結果歸納出下列結論:
    (1) 鈦六鋁四釩表面親水性及表面蛋白質的吸附會隨著奈米級表面粗糙度增加而增加。
    (2) 細胞黏附力會隨著表面親水性與奈米級粗糙度增加而增加。
    (3) 在相同的時間及表面前處理下,類骨細胞的細胞黏附強度比纖維細胞大。
    (4) 類骨細胞及纖維細胞其細胞黏附力會隨著培養時間增加而增加。
    (5) 在奈米尺度下不管是類骨細胞及纖維細胞,較粗糙的表面細胞型態有較多的偽足產生,並且黏附蛋白F-actin及vinculin的定量結果也較平滑的表面多。
    (6) 在奈米尺度下不管是類骨細胞及纖維細胞,越平滑的表面越能促進細胞增生的表現。
    (7) 無CaP前處理的組別,塗佈膠原蛋白於鈦合金表面無法形成均勻塗層
    (8) 只有CaP塗層的組別,細胞增生的表現最差。
    (9) 鈣磷/膠原蛋白複合塗層確實能促進細胞增生及較佳的細胞貼附表現。
    本研究證實了不同的奈米粗糙度等級會造成材料表面特性改變,並且也進一步影響纖維母細胞與骨母細胞的反應,另一方面仿生性collagen/CaP 塗層確實能影響細胞的行為,促進細胞生長,因此鈦六鋁四釩選擇適當的仿生性表面改質處理程序,可使鈦合金更具細胞親和性。此外,應用細胞刮取儀方法來量測細胞與生醫材料的黏附力,可提供評估生醫材料親和性的另一選擇參考。

    The biomimetic approach for the fabrication of function biomaterial is expected to promote cell response in recent years. Biomimetic modification of biomaterial becomes one of the current main researches, thus nano roughness and biomimetic coatings also become research priorities of current studies. Three aspects are discussed in this research. The first one aims at investigating the effect of roughness changes in nanometric scale on the surface properties and cell response. Proceeding preparation of nanometric roughness on titanium surface through mechanical grinding and wet polishing methods. Two cell types, human osteoblastlike cells and NIH-3T3 fibroblast cells, were used to evaluate the compatibility of biomaterial. Experiment includes tests of material surface properties, such as nanometric roughness, surface topography, wettability and surface chemical composition analysis; biocompatibility testing includes cell proliferation, cell morphology, cell skeleton and cell attachment. Secondly, we employ a cyto-detacher that quantitatively measures the cell adhesion strength between cells with substrates, and it’s an accurate and sensitive method. At the same time, we discuss about the surface characteristics to understand the factors and relationships that affect adhesion forces. Thirdly, to improve surface biocompatibility by nanomertric surface and biomimetic coating, and respectively compare four different pretreatments such as nanometric roughness surface, CaP coating, Collagen coating and Collagen/CaP coating. The experimental methods include preparation for biomimetic coating, observation to surface coating morphology, chemical composition analysis, cell proliferation and morphological observation.
    The result shows that nanometric roughness may change surface properties such as surface topography, wettability, amount percentage of amphoteric hydroxyl and protein adsorption. Thus, it does further affect the growth behavior of fibroblast and osteoblast which includes the performance of cell morphology, cell adhesion, cell proliferation, and cell adhesive protein. In preparation for biomimetic coating, it successfully prepared continuous and homogenous coatings through a simple and efficient method, which confirmed the performance that biomimetic coating does promote the cytocompatibility. The followings are the summaries of the results:
    (1) Both wettability and protein adsorption of Ti6Al4V are increasing with surface nanometric roughness.
    (2) Cell adhesion force is increasing with nanometric roughness and wettability.
    (3) In a same time and same surface pretreatment, cell adhesion force of osteoblast-like cell is greater than fibroblasts.
    (4) Cell adhesion force of osteoblast-like cell and fibroblast are increasing with culturing time.
    (5) In the nanometer scale, osteoblast-like cell and fibroblast have more lamellipodia and filopodia, and quantitative result of adhering to protein F-actin and vinculin are more compared with the smoother groups on the type of rough surface cell.
    (6) In the nanometer scale, the smoother surface has the better cell proliferation for osteoblast-like cell and fibroblasts.
    (7) Groups without CaP pre-treatment do not form uniform collagen coatings on titanium surface.
    (8) Only groups with CaP coating have the worst cell proliferation.
    (9) Collagen / CaP coating promotes the cell proliferation and cell attachment.
    This study demonstrates that different levels of nanometric roughness change surface properties and also further affect responses of fibroblast and osteoblast. On the other hand, biomimetic Collagen/CaP coatings actually affect cell behavior and promote growth of cells. Thus, Ti6Al4V is selected the appropriate treatment of biomimetic surface modification so that makes titanium alloy more cytocompatibility. In addition, measuring cell adhesion force and biomaterials by application of cytodetachment provides an alternative reference to the affinity assessment of biomaterial.

    中文摘要 I Abstract III 誌謝 VI Table of contents VII List of Figures XI List of Tables XVI 1. Chapter 1 Introduction 1 1.1 Biomaterials 1 1.2 Biomimetic materials 2 1.2.1 Nano Biomimetic material 2 1.2.2 Biomimetic coating 4 1.3 Cell adhesion force 6 1.3.1 Centrifugation devices 6 1.3.2 Micropipette devices 7 1.3.3 Flow chamber devices 7 1.3.4 Spinning dish devices 8 1.3.5 Microcantilever 8 2. Chapter 2 Objective 11 3. Chapter 3 12 Subtitle: Effects of nanometric roughness on surface properties and osteoblast and fibroblast’s cytocompatibility of Ti6Al4V 12 Abstract 12 3.1 Introduction 14 3.2 Materials and Methods 17 3.2.1. Experimental materials 17 3.2.2. Surface characterization 17 3.2.3 Cell culture 19 3.2.4 Cell morphology 19 3.2.5 Cytodetachment test 20 3.2.6 MTT cell proliferation assay 23 3.2.7. Protein adsorption 23 3.2.8. Vinculin and F actin expression analysis 24 3.2.9 Statistical analysis 25 3.3 Results 26 3.3.1 Surface characterization 26 3.3.1.1 Surface topography (SPM) 26 3.3.1.2 Contact angle 32 3.3.1.3 XPS analyses of sample 34 3.3.1.4 Bicinchoninic acid (BCA) assay 34 3.3.2 Cell culture studies 36 3.3.2.1 Cell morphology 36 3.3.2.2 The cell adhesion forces of HOS and fibroblast for the short period 39 3.3.2.3 The cell adhesion forces of HOS and fibroblast for the long period 41 3.3.2.4 Cell proliferation 44 3.3.2.5 The F-actin fiber formation for HOS and fibroblasts 48 3.3.2.6. The vinculin expression for HOS and fibroblasts 49 3.4 Discussions 53 3.5 Conclusion 72 4. Chapter 4 74 Subtitle: Characteristics and cyto-compatibility of collagen/Ca-P coatings on Ti6Al4V substrate 74 Abstract 74 4.1 Introduction 75 4.2 Materials and Methods 78 4.2.1 Experimental materials 78 4.2.2 Biomimetic Ca-P coating 78 4.2.3 Type I collagen coating 80 4.2.4 Collagen/Ca-P coating 80 4.2.5 Characterization of materials 80 4.2.6 Cell culture 81 4.2.7 Cell morphology 81 4.2.8 AlamarBlue cell proliferation assay 82 4.2.9 Statistical analysis 82 4.3 Results 84 4.3.1 Surface characterization 84 4.3.2 Cell morphology 92 4.3.3 Cell proliferation 95 4.4 Discussion 97 4.5 Conclusion 102 5. Conclusion Remark 103 6. Future work 104 7. References 105  

    [1]. Biomedical Implants: Corrosion and its Prevention - A Review G. Manivasagam, D. Dhinasekaran and A. Rajamanickam, Biomedical Implants: Corrosion and its Prevention - A Review, Recent Patents on Corrosion Science. 2, 40-54, 2010
    [2]. S. Mo, G. Zheng, F. Jun, L. Jing, F.Y. Chao, S. Lei and J. L. Shu, The effects of nail rigidity on fracture healing in rats with osteoporosis, ACTA ORTHOP. 80, 135–138,2009
    [3]. M. Navarro, A. Michiardi, O. Castaño and J.A. Planell, Biomaterials in orthopaedics, J. R. Soc. Interface. 5, 1137-1158, 2008
    [4]. A. Narang and R. Mahato, Biological and Biomaterial Approaches for Improved Islet Transplantation, Pharmacol Rev 58, 194–243, 2006
    [5]. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine Material Science, Surface Science. Engineering, Biological Responses and Medical Applications. Springer
    [6]. J. E. Steele, Bionics Symposium - Living Prototypes - the key to new technology, Wadd Technical Report 13–15 1960.
    [7]. H. D. Michael, Bionics: Biological insight into mechanical design. Proc Natl Acad Sci USA. 96, 14208–14209, 1999.
    [8]. C. Zollfrank, P. Cromme, M. Rauch, H. Scheel, M. H. Kostova, K. Gutbrod, S. Gruber and D. V. Opdenbosch. Biotemplating of inorganic functional materials from polysaccharides, Bioinspired, Biomimetic and Nanobiomaterials. 1-13, 2011.
    [9]. M. A. Meyers, P. Y. Chen and A. Y. M. Lin,Y. Seki. Biological materials: Structure and mechanical properties PROG MATER SCI. 53,1–206, 2008.
    [10]. S. V. Dorozhkin. Calcium Orthophosphates as Bioceramics: State of the Art, J. Funct. Biomater. 1, 22-107, 2010
    [11]. B. I. Beletskii, V. I. Shumskii, A. A. Nikitin and E. B. Vlasova1, Biocomposite calcium-phosphate materials used in osteoplastic surgery, GLASS CERAM+. 57, 9-10, 2000
    [12]. S. Ramakrishna, Z. M. Huang, G. V. Kumar, A. W. Batchelor and J. Mayer, An introduction to biocomposites, Series on Biomaterials and Bioengineering. 1 2004.
    [13]. J. Schiotz, T. Vegge, and K. W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, PHYS REV B. 60, 1-10, 1998.
    [14]. H. Liu and T. J. Webster, Nanotechnology for the regeneration of hard and soft tissues, World scientific publishing. 1-52, 2007.
    [15] T. Ogawa, L. Saruwatari, K. Takeuchi, H. Aita and N. Ohno, Ti nano-nodular structuring for bone integration and regeneration, J. Dent. Res. 87(8), 751-756, 2008.
    [16] T. J. Webster and J. U. Ejiofor, Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo, Biomaterials. 25(19), 4731-4739, 2004.

    [17] K. C. Popat, R. H. Daniels, R. S. Dubrow, V. Hardev and T. A. Desai, Nanostructured surfaces for bone biotemplating applications, J. Orthop. Res. 24(4), 619-627, 2006.
    [18] X. Liua, P. K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mat. Sci. Eng. R. 47, 49–121, 2004.
    [19] M. F. Hsieh, L. H. Perng and T. S. Chin, Hydroxyapatite coating on Ti6Al4V alloy using a sol–gel derived precursor, Mater. Chem. Phys. 74, 245–250, 2002.
    [20] H. Oonishi, M. Yamamoto, H. Ishimaru, E. Tsuji, S. Kushitani, M. Aono and Y. Ukon, The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants, J. Bone Joint Surg. BR. 171-B, 213-216, 1989.
    [21] K. Ono, T. Yamamuro, T. Nakamura and T. Kokubo, Mechanical properties of bone after implantation of apatite-wollastonite containing glass ceramic-fibrin mixture, J. Biomed. Mater. Res. A. 24, 47-63, 1990.
    [22] H. C. Blair, A. J. Kahn, E. C. Crouch, J. J. Jeffrey and S. L. Teitelbaum, Isolated osteoclasts resorb the organic and inorganic components of bone, J. Cell Biol. 102, 1164-1172, 1986.
    [23] D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos and Y. F. Missirlis, Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials. 22, 87-96, 2000.
    [24] J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford Jr., D. D. Dean, D. L. Cochran, B. D. Boyan, Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63), J. Biomed. Mater. Res. A. 29, 389–401, 1995.
    [25] P. Thevenot, W. Hu, L. Tang, Surface Chemistry Influences Implant Biocompatibility, Curr. Top. Med. Chem. 8, 270-280, 2008.
    [26] Q. Yu, Y. Zhang, H. Chen, F. Zhou, Z. Wu, H. Huang and J. L. Brash, Protein Adsorption and Cell Adhesion/Detachment Behavior on Dual-Responsive Silicon Surfaces Modified with Poly(N-isopropylacrylamide)-block- polystyrene Copolymer, Langmuir, 26(11), 8582–8588, 2010.
    [27] D. R. McClay, G. M. Wessel and R. B. Marchase, Intercellular recognition: quantitation of initial binding events, P. Natl. Acad. Sci. USA. 78(8)4975-4979, 1981.
    [28] M. M. Lotz, C. A. Burdsal, H. P. Erickson and D. R. McClay, Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response, J. Cell Biol. 109, 1795-1805, 1989.
    [29] O. Thoumine, A. Ott and D. Louvard, Critical centrifugal forces induce adhesion rupture or structural reorganization in cultured cells, Cell Motil. Cytoskel. 33(4), 276-287, 1996.
    [30] K-L. P. Sung, M. K. Kwan, F. Maldonado and W. H. Akeson, Adhesion strength of human ligament fibroblasts, J. Biomech. Eng. 116(3), 237-242, 1994.
    [31] M. Sato, N. Ohshima and R. M. Nerem, Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress, J. Biomech. 29(4), 461-467, 1996.
    [32] O. Thoumine and A. Ott, Comparison of the mechanical properties of normal and transformed fibroblasts, Biorheology. 34(4-5), 309-326, 1997.
    [33] D. J. Nugiel, D. J. Wood and K-L. P. Sung, Quantification of adhesiveness of osetoblasts to titanium surfaces in vitro by the micropipette aspiration technique. Tissue Eng. 2, 127-140, 1996.
    [34] N. F. Owens, D. Gingell and P. R. Rutter, Inhibition of cell adhesion by a synthetic polymer adsorbed to glass shown under defined hydrodynamic stress. J. Cell Sci. 87(5), 667-675, 1987.
    [35] G. A. Truskey and T. L. Proulx, Relationship between 3T3 cell spreading and the strength of adhesion on glass and silane surfaces, Biomaterials. 14(4), 243-254, 1993.
    [36] H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith and K. F. Jensen, Microfluidic shear devices for quantitative analysis of cell adhesion, Anal. Chem. 76(18), 5257-5264, 2004.
    [37] A. J. García, P. Ducheyne and D. Boettiger, Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials, Biomaterials. 18 (16), 1091-1098, 1997.
    [38] K. S. Furukawa, T. Ushida, T. Nagase, H. Nakamigawa, T. Noguchi, T. Tamaki, J. Tanaka and T. Tateishi, Quantitative analysis of cell detachment by shear stress, Mat. Sci. Eng. C-Mater. 17(1-2), 55–58, 2001.
    [39] Y. J. Kim, J. W. Shin, K. D. Park, J. W. Lee, N. Yui, S. A. Park, K. S. Jee and J. K. Kim, A study of compatibility between cells and biopolymeric surfaces through quantitative measurements of adhesive forces, J. Biomat. Sci-Polym. E. 14(12), 1311-1321, 2003.
    [40] K. A. Athanasiou, B. S. Thoma, D. R. Lanctot, D. Shin, C. M. Agrawal, R. G. LeBaron, Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell, Biomaterials., 20(23-24), 2405-2415, 1999.
    [41] G. Hoben, W. Huang, S. Brian, R. Thoma, G. L. Richard and K. A. Athanasiou, Quantification of varying adhesion levels in chondrocytes using the cytodetacher, Ann. Biomed. Eng. 30, 703-712, 2002.
    [42] G. Sagvolden, I. Giaever, E. O. Pettersen and J. Feder, Cell adhesion force microscopy, Biophysics. 96, 471-476, 1999.
    [43] A. Yamamoto, S. Mishima, N. Maruyama, M. Sumita, A new technique for direct measurement of the shear force necessary to detach a cell from a material, Biomaterials. 19(7-9), 871-879, 1998.
    [44] M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, Sci. Technol. Adv. Mater. 4, 445-454, 2003.
    [45] D.D.Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee and Y.F. Missirlis, Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption, Biomaterials. 22, 1241-1251, 2001.
    [46] T. M. Lee, R. S. Tsai, E. Chang, C. Y. Yang and M. R. Yang, The cell attachment and morphology of neonatal rat calvarial osteoblasts on the surface of Ti-6Al-4V and plasma-sprayed HA coating: Effect of surface roughness and serum contents, J. Mater. Sci-Mater. M. 13, 341-350, 2002.
    [47] C. Buzea, I.I. Pacheco and K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases. 2(4), MR17-MR172, 2007.
    [48] H.J. Kim, S.H. Kim, M.S. Kim, E.J. Lee, H.G. Oh, W.M. Oh, S.W. Park, W.J. Kim, G.J. Lee, N.G. Choi, J.T. Koh, D.B. Dinh, R.R. Hardin, K. Johnson, V.L. Sylvia, J.P. Schmitz and D.D. Dean, Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells, J. Biomed. Mater. Res. 74A(3), 366-373, 2005.
    [49] X. Liu, P.K. Chu and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mat. Sci. Eng. R. 47, 49-121, 2004.
    [50] S. Rupprecht, A. Bloch-Birkholz, B. Lethaus, S. Rosiwal, F. W. Neukam and A. Schlegel, The bone-metal interface of defect and press-fit ingrowth of microwave plasma-chemical vapor deposition implants in the rabbit model, Clin. Oral. Implan. Res. 16(1), 98-104, 2005.
    [51] A. Balamurugan, A. H. S. Rebelo, S. Kannan, J. M. F. Ferreira, J. Michel, G. Balossier and S. Rajeswari, Characterization and In Vivo Evaluation of Sol–Gel Derived Hydroxyapatite Coatings on Ti6Al4V Substrates, J. Biomed. Mater. Res. 81B(2), 441-447, 2007.
    [52] J. E. Raynor, J. R. Capadona, D. M. Collard, T. A. Petrie, and A. J. García, Polymer brushes and self-assembled monolayers: Versatile platforms to control cell adhesion to biomaterials (Review), Biointerphases. 4(2), FA3-16, 2009.
    [53] Y. Yang, R. Glover and J. L. Ong, Fibronectin adsorption on titanium surfaces and its effect on osteoblast precursor cell attachment, Colloid. Surface. B. 30, 291-297, 2003.
    [54] V. Perla and T. J. Webster, Better osteoblast adhesion on nanoparticulate selenium—A promising orthopedic implant material, J. Biomed. Mater. Res. 75A, 356-364, 2005.
    [55] K. Cai, J. Bossert and K. D. Jandt, Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?, Colloid. Surface. B. 49, 136-144, 2006.
    [56]. D. J. Goetz, D. M. Greif, J. Shen and F. W. Luscinskas, Cell-cell adhesive interactions in an in vitro flow chamber, Adhesion Protein Protocols, Method. Mol. Biol. 96, 137-145, 1999.
    [57]. A. J. García, P. Ducheyne and D. Boettiger, Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials, Biomaterials. 18, 1091-1098, 1997.
    [58]. C. D. Reyes and A. J. García, A centrifugation cell adhesion assay for high-throughput screening of biomaterial surfaces, J. Biomed. Mater. Res. A. 67, 328-333, 2003.
    [59]. N. Scheres, M. L. Laine, P. M. Sipos, C. J. Bosch-Tijhof, W. Crielaard, T. J. de Vries and V. Everts, Periodontal ligament and gingival fibroblasts from periodontitis patients are more active in interaction with Porphyromonas gingivalis, J. Periodontal Res. 46, 407-416, 2011. 86
    [60]. C. C. Wang, M. C. Hsieh and T. M. Lee, Effects of nanometric roughness on surface properties and fibroblast’s initial cytocompatibilities of Ti6Al4V, Biointerphases. 6, 87-97, 2011.
    [61] C. C. Wang, Y. C. Hsu, F. C. Su, S. C. Lu and T. M. Lee, Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher, J. Biomed. Mater. Res. 88A(2), 370-383, 2009.
    [62] Technical Documents Department. NanoScope Command Reference Manual, CA, USA, Digital Instruments, Inc.1996 Chapter 12 87–8.
    [63] F. Mabboux, L. Ponsonnet, J. J. Morrier. N. Jaffrezic and O. Barsotti, Surface free energy and bacterial retention to saliva-coated dental implant materials—an in vitro study, Colloid. Surface. B. 39, 199-205, 2004.
    [64] J. Lawrence, L. Hao and H. R. Chew, On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy, Surf. Coat. Tech. 200, 5581-5589, 2006.
    [65] W. Zhou, X. Zhong, X. Wu, L. Yuan, Z. Zhao, H. Wang, Y. Xia, Y. Feng, J. He and W. Chen, The effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells, Surf. Coat. Tech. 200, 6155-6160, 2006.
    [66] A. V. Bandura, D. G. Sykes, V. Shapovalov, T. N. Troung, J. D. Kubicki and R. A. Evarestov, Adsorption of Water on the TiO2 (Rutile) (110) Surface: A Comparison of Periodic and Embedded Cluster Calculations, J. Phys. Chem. B. 108, 7844-7853, 2004.
    [67]. C. J. Wilson, R. E. Clegg, D. I. Leavesley and M. J. Pearcy, Mediation of biomaterial–cell interactions by adsorbed proteins: a review, Tissue Eng. 11, 1-18, 2005.
    [68]. H. C. van der Mei, S. Meijer and H. J. Busscher, Electrophoretic mobilities of protein-coated hexadecane droplets at different pH, J. Colloid Interf. Sci. 205, 185-190, 1998.
    [69]. A. Dolatshahi-Pirouz, K. Rechendorff, M. B. Hovgaard, M. Foss, J. Chevallier and F. Besenbacher, Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D, Colloid. Surface. B. 66, 53-59, 2008.
    [70]. G. Sagvolden, I. Giaever, E. O. Pettersen and J. Feder, Cell adhesion force microscopy, Proc. Natl. Acad. Sci. USA. 96, 471-476, 1999.
    [71]. G. Sagvolden, Protein Adhesion Force Dynamics and Single Adhesion Events, Biophys. J. 77, 526-532, 1999.
    [72] L. Ponsonnet, V. Comte, A. Othmane, C. Lagneau, M. Charbonnier, M. Lissac and N. Jaffrezic, Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel–titanium substrates, Mat. Sci. Eng. C-Mater. 21, 157-165, 2002.

    [73] M. J. Chen, C. Y. Wu, D. P. Song, W. M. Dong and K. Li, Effect of grooves on adsorption of RGD tripeptide onto rutile TiO2 (110) surface, J. Mater. Sci-Mater. M. 20, 1831-1838, 2009.
    [74] K. Webb, V. Hlady and P. A. Tresco, Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization, J. Biomed. Mater. Res. A. 41, 422-430, 1998.
    [75] T. A. Horbett, J. J. Waldburger, B. D. Ratner and A. S. Hoffman, Cell adhesion to a series of hydrophili–hydrophobic copolymers studies with a spinning disc apparatus, J. Biomed. Mater. Res. A. 22, 383-404, 1988.
    [76] G. Sagvolden, I. Giaever, E. O. Pettersen and J. Feder, Cell adhesion force microscopy, P. Natl. Acad. Sci. USA. 96, 471-476, 1999.
    [77] G. Sagvolden, Protein adhesion force dynamics and dingle adhesion events, Biophys. J. 77, 526-532, 1999.
    [78] B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao and X. D. Zhang, Characterization of surface oxide films on titanium and bioactivity, J. Mater. Sci- Mater. M. 13, 457-464, 2002.
    [79]. K. Anselme, P. Linez, M. Bigerelle, D. Le Maguer, A. Le Maguer, P. Hardouin, H. F. Hildebrand, A. Iost and J. M. Leroy, The relative infuence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behavior, Biomaterials. 21, 1567-1577, 2000.

    [80]. K. Anselme, M. Bigerelle, B. Noel, A. Iost and P. Hardouin, Effect of grooved titanium substratum on human osteoblastic cell growth, J. Biomed. Mater. Res. A. 60, 529-540, 2002.
    [81]. J. C. Keller, G. B. Schneider, C. M. Stanford, and B. Kellogg, Effects of implant microtopography on osteoblast cell attachment, Implant Dent. 12(2), 175-181, 2003.
    [82]. T. Osathanon, K. Bespinyowong, M. Arksornnukit, H. Takahashi and P. Pavasant, Human osteoblast-like cell spreading and proliferation on Ti-6Al-7Nb surfaces of varying roughness, J. Oral Sci. 53, 23-30, 2011.
    [83]. L. Ponsonnet, V. Comte, A. Othmane, C. Lagneau, M. Charbonnier, M. Lissac and N. Jaffrezic, Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates, Mat. Sci. Eng. C-Mater. 21, 157-165, 2002.
    [84] L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac and C. Martelet, Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour, Mat. Sci. Eng. C-Mater. 23, 551-560, 2003.
    [85]. C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. Jaffrezic-Renault and L. Ponsonnet, Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts, Mat. Sci. Eng. C-Mater. 25, 51-60, 2005.
    [86]. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee and Y. F. Missirlis, Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption, Biomaterials. 22, 1241-1251, 2001.
    [87]. J. D. Bumgardner, R. Wiser, S. H. Elder, R. Jouett, Y. Yang and J. L. Ong, Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium, J. Biomat. Sci-Polym. E. 14, 1401-1409, 2003.
    [88]. N. Tanaka, S. Ichinose, Y. Kimijima, and M. Mimura, Investigation of titanium leak to bone tissue surrounding dental titanium implant: electron microscopic findings and analysis by electron diffraction, Med. Electron. Microsc. 33, 96-101, 2000.
    [89]. T. M. Lee, E. Chang, B. C. Wang, and C. Y. Yang, Characteristics of Plasma-Sprayed Bioactive Glass Coatings on Ti-6Al-4V Alloy: An in Vitro StudySurface and Coatings Technology, Surf. Coat. Tech. 79, 170-177, 1996.
    [90]. Y. C. Tsui, C. Doyle, and T. W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates, Part 2: optimisation of coating properties, Biomaterials. 19, 2031-2043, 1998.
    [91]. E. De Gigilo, L. Sabbatini, S. Colucci and G. Zambonin, Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates, J. Biomat. Sci-Polym. E. 11, 1073-1083, 2000.
    [92]. I. K. Jun, J. H. Jang, H. W. Kim, and H. E. Kim, Recombinant osteopontin fragment coating on hydroxyapatite for enhanced osteoblast-like cell responses, J. Mater. Sci. 40, 2891-2895, 2005.
    [93]. C. S. Ku, M. Sathishkumar and S. P. Mun, Binding affinity of proanthocyanidin from waste Pinus radiata bark onto proline-rich bovine achilles tendon collagen type I, Chemosphere. 67, 1618-1627, 2007.
    [94]. H. Hong and J. P. Stegemann, 2D and 3D collagen and fibrin biopolymers promote specific ECM and integrin gene expression by vascular smooth muscle cells, J. Biomat. Sci-Polym. E. 19, 1279-1293, 2008.
    [95]. J. C. Brodie, E. Goldie, G. Connel, J. Merry and M. H. Grant, Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen, J. Biomed. Mater. Res. A. 73(4), 409-421, 2005.
    [96]. U. Geißler, U. Hempel, C. Wolf, D. Scharnweber, H. Worch and K.-W. Wenzel, Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts, J. Biomed. Mater. Res. A. 51, 752-760, 2000.
    [97]. Y. Honda, S. Kamakura, K. Sasaki and O. Suzuki, Formation of bone-like apatite enhanced by hydrolysis of octacalcium phosphate crystals deposited in collagen matrix, J. Biomed. Mater. Res. B. 80(2), 281-289, 2007.
    [98]. Y. Ohyabu, , T. Adegawa, T. Yoshioka, T. Ikoma, K. Shinozaki, T. Uemura and J. Tanaka, A collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite as a scaffold for cartilage tissue engineering, J. Biomat. Sci-Polym. E. 20, 1861-1874, 2009.
    [99]. S. D. Miao, W. J. Weng, Z. L. Li, K. Cheng, P. Y. Du, G. Shen and G. R. Han, Electrolytic deposition of octacalcium phosphate/collagen composite coating on titanium alloy, J. Mater. Sci-Mater. M. 20, 131-134, 2009.
    [100]. Y. Chen, A. F. T. Mak, M. Wang and J. S. Li, Composite coating of bonelike apatite particles and collagen fibers on poly L-lactic acid formed through an accelerated biomimetic coprecipitation process, J. Biomed. Mater. Res. B. 77, 315-322, 2006.
    [101]. M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi and T. Nakamura, Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal, J. Biomed. Mater. Res. A. 63, 522-530, 2002.
    [102]. H.M. Kim, T. Himeno, M. Kawashita, J. H. Lee, T. Kokubo, T. Nakamura, Adv. Mater. 13, 1072 (2004)
    [103]. C. C. Wang, Y. C. Hsu, M. C. Hsieh, S. P. Yang, F. C. Su and T. M. Lee, Effects of nano-surface properties on initial osteoblast adhesion and Ca/P adsorption ability for titanium alloys, Nanotechnology. 19, 335709-335718, 2008.
    [104]. J. C. Y. Dunn, R.G. Tompkins and M. L. Yarmush, Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration, Biotechnol. Progr. 7, 237-245, 1991.
    [105]. H. Takadama, H. M. Kim, T. Kokubo and T. Nakamura, An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal, J. Biomed. Mater. Res. A. 55, 185-193, 2001.
    [106]. L. Jonasova, F. A. Muller, A. Helebrant, J. Strnad and P. Greil, Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer, Biomaterials. 23, 3095-3101, 2002.
    [107]. C. C. Chusuei, D. W. Goodman, M .J. Van Stipdonk, D. R. Justes and E. A. Schweikert, Calcium phosphate phase identification using XPS and time-of-flight cluster SIMS, Anal. Chem. 71, 149-153, 1999.
    [108]. S. Takata, A. Shibata, H. Yonezu, T. Yamada, M. Takahashi, A. Abbaspour and N. Yasui, Biophysic evaluation of bone quality-application of Fourier transform infrared spectroscopy and phosphorus-31 solid-state nuclear magnetic resonance spectroscopy, J. Med. Invest. 51, 133-138, 2004.
    [109]. V. Thomas, D. R. Dean, M. V. Jose, B. Mathew, S. Chowdhury and Y. K. Vohra, Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite, Biomacromolecules. 8, 631-637, 2007.
    [110]. K. Z. Liu, I. M. C. Dixon and H. H. Mantsch, Distribution of collagen deposition in cardiomyopathic hamster hearts determined by infrared microscopy, Cardiovasc. Pathol. 8, 41-47, 1999.
    [111]. J. Fassett, D. Tobolt and L. K. Hansen, Type I Collagen Structure Regulates Cell Morphology and EGF Signaling in Primary Rat Hepatocytes through cAMP-dependent Protein Kinase A, Mol. Biol. Cell. 17, 345-356, 2006.
    [112]. K. Fukuda, Y. Koshihara, H. Oda, M. Ohyama and T. Ooyama, Type V collagen selectively inhibits human endothelial cell proliferation, Biochem. Bioph. Res. Co. 151, 1060-1068, 1988.
    [113]. M. J. Mo, S. U. Kim, H. Y. Shin, D. S. Im, II. H. Jung, J. S. Ko and W. K. Lee, Biological responses of osteoblastic HOS cells to titanium- and calcium phosphate-coated films, J. Ind. Eng. Chem. 11, 507-514, 2005.
    [114]. E. Van der Wal, A. M. Vredenberg, P. J. Ter Brugge, J. G. C. Wolke and J. A. Jansen, The in vitro behavior of as-prepared and pre-immersed RF-sputtered calcium phosphate thin films in a rat bone marrow cell model, Biomaterials 27, 1333-1340, 2006.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE