| 研究生: |
黃建敦 Huang, Jian-Duen |
|---|---|
| 論文名稱: |
金屬噴霧在基板衝擊效應下之霧化特性 Characteristics of Metallic Spray with Impingement on a Substrate |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 金屬噴霧 、衝擊 、基板 |
| 外文關鍵詞: | substrate, Metallic spray, impinge |
| 相關次數: | 點閱:53 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討熔融金屬噴霧在基板衝擊效應下之霧化特性。研究之參數包括基板之外徑(D=40mm~100mm)、內徑(d=40mm~70mm)、以及基板與噴嘴出口之距離(Z=150mm~250mm)對噴霧特性之影響。金屬粉末以INSITEC粒徑分析儀在流場中進行粒徑即時量測,熔融金屬噴霧流場之溫度以熱電耦量測。實驗所採用之金屬成分為錫鉛合金(錫63%,鉛37%),其熔點為183℃。實驗結果顯示,在噴嘴下方配置基板可大幅降低金屬噴霧之平均粒徑(SMD),從原本未加基板時之13.72m降低至6.60m。實驗結果亦發現SMD隨基板對噴霧遮蔽率之增加而遞減,且基板對噴霧中心之相對位置及遮蔽面積大小亦是影響之重要參數。當基板與噴嘴距離增加時,由於液態金屬冷卻凝固以及速度減緩之原因,使得基板衝擊效應較不顯著,故金屬粉末平均粒徑隨基板與噴嘴之距離增大,但仍比未加基板時之SMD小。結果亦顯示在未加基板時金屬噴霧體積百分比V0-15為34.97%,但在基板衝擊作用下V0-15則大幅提高,其值高達63.59%,顯示所產生者為超微細之金屬粉末。另外在未加基板時金屬噴霧體積百分比V15-25為36.58%,而在基板衝擊效應下V15-25最高值為40.15%。以熱電耦量測金屬噴霧流場之溫度,顯示噴霧流場溫度低於金屬熔點,此乃因為熱電耦量測到的溫度為熔融金屬噴霧與空氣之平均溫度,且熔融狀金屬噴霧在離開噴嘴後由於受空氣急速冷卻,易產生過冷之現象,成為一種外部呈現固態,核心為液態之金屬顆粒,撞擊至熱電耦表面會產生固液兩相重新混和之現象,故所量測金屬噴霧之溫度均低於金屬之熔點。由於在熱電耦表面觀察到金屬噴覆成型之現象,證明金屬顆粒在接觸至熱電耦時為尚未完全凝固之顆粒。由金屬噴霧之粒徑分佈圖,發現在基板衝擊效應下,不但使噴霧整體之顆粒變小,且粒徑分佈範圍更為狹窄集中,故基板衝擊效應能有效達成使金屬噴霧粒徑細微化與粒徑分佈窄化之目的。
This research investigates the characteristics of metallic spray with impingement on a substrate. The metallic spray was injected by a twin-fluid atomizer with mean particle size of 13.72m. The substrates were designed as the disk-type geometries with the inner and outer diameters ranging from 40mm to 70mm and 40mm to100mm, respectively. The distance from the outlet of the atomizer to the substrate varied at Z=150mm~250mm. The metal powders were then measured by an INSITEC Particle analyzer. The temperature of the metallic spray flow was measured by the thermocouples. The metal used in this research was Sn63%Pb37% alloy with melting point of 183℃. Results showed that the Sauter mean diameter (SMD) of the metallic spray decreased dramatically to 6.60m by placing the substrate in the down stream of the atomizer. Results also showed that the SMD decreased as the blockage ratio of the substrate to the spray flow was increased. The particle size was also controlled by the relative position of the substrate to the atomizer. It was found that the effects of the flow impingement to the substrate were decreased as the distance between the atomizer and substrate was increased because the mean temperature and the velocity of the metallic spray decreased in the down stream. However, the particle size of the metallic spray with substrate was smaller than the case without substrate. The volume percentage of the powder with size less than 15m (V0-15) increased from 34.97% in the case without substrate to 63.59% in the cases with substrate, indicating the production of the ultra-fine metal powder. The temperatures measured in the spray flow were lower than the melting point of the alloy, indicating that temperatures measured were the average temperatures of the molten particles and the air flow. Observation from the particle size distribution of the metallic spray showed that the metal powder was finer and more concentrated. Hence the impinging mechanism can be used to control the particle size and size distribution in the metal powder production.
[1] Lefebvre, A. H., ”Atomization and Spary,” Hemisphere Publishing
Corporation, New York, pp.1-25 , 1989.
[2] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[3] Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
[4] Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
[5] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., ”An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
[6] Fraser, R. P., ”Liquid Fuel Atomization, ” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp.687-701,1957.
[7] Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No.7901/2-0, 1979.
[8] Cubberly, and William, H. Metal Handbook. ninth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
[9] Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, 1978, pp. 1-32.
[10] Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol. 5,pp. 252-256.
[11] German and Randall, M., Powder Metallurgy Science. Metal Powder Industries Federation, Princeton, N.J., 1994.
[12] Nukiyama, S. and Tanasawa, Y., "Experiments on Atomization of Liquids in an Airstream," Transaction of JSME, Vol. 5, No. 18, pp. 68-75, 1939.
[13] Gretzinger, J. and Marshall, W.R. Jr., "Characteristics of Pneumatic Atomization," AIChE Journal, Vol. 7, No. 2, pp. 312-318, Jun. 1961.
[14] Kim, K.Y., and Marshall, W.R. Jr., "Drop-Size Distributions from Pneumatic Atomizers," AIChE Journal, Vol. 17, No. 3, pp. 575-584, May 1971.
[15] Tate, R.W., "Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers," Proceeding of the 3rd ICLASS," pp. IIC/1/1-13, 1985.
[16] Rizkalla, A. A. and Lefebvre A.H., "Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp. 173-179, April 1975.
[17] Rizkalla, A. A. and Lefebvre A.H., “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol. 97, pp. 316-320, 1975
[18] Rizk, N. K. and Lefebvre, A. H., ”Influence of Atomizer DesignFeature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp.1139-1142, 1983.
[19] Beck, J., Lefebvre, A. H. and Koblish, T., ”Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
[20] Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
[21] Beck, J. E. and Lefebvre A. H., "Airblast Atomization at Conditions of Low Air Velocity," J. Propulsion, Vol. 7, NO.2, March-April, 1991.
[22] Aligner, M. and Wittig, S., "Swirl and Counter Swirl Effects in Prefilming Airblast Atomization", Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
[23] 許耀仁。氣衝式平面噴嘴液膜霧化特性之研究。 國立成功大學航太所碩士論文, 1993。
[24] Sattelmayer, T. and Witting, S., ”Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp.465-472, 1986.
[25] Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
[26] Press, C., Gupta, A.K. and Semerjian, H.G., "Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer, "HTD-vol.104, pp.111-119, 1988.
[27] Kevin, S. Chen and Lefebvre, A. H., "Spray Cone Angle of Effervescent Atomizers," Atomization and Sprays, vol. 4, pp.291-301, 1994.
[28] 楊坤和。研究型氣助式噴嘴之噴霧特性研究。 國立成功大學航太所碩士論文,1992。
[29] 徐明生。雙流體式平面噴嘴霧化特性之研究。 國立成功大學航太所碩士論文,1995。
[30] 王承光。氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究。國立成功大學航太所碩士論文,1996。
[31] 康煜昌。平面型液態金屬霧化器之霧化特性研究。 國立成功大學航太所碩士論文,1998。
[32] 楊舒然。強制式液態金屬霧化器之控制參數研究。 國立成功大學航太所碩士論文,1999。
[33] 楊哲睿。液態金屬在噴嘴不同長寬比下之霧化特性。 國立成功大學航太所碩士論文,2002。
[34] 郭振展,液態金屬在噴嘴低長寬比下之霧化特性,國立成功大學航太所碩士論文,2003。
[35] 陳哲萍,超微粒錫粉銲料之噴霧製造研究,國立成功大學航太所碩士論文,2004。
[36] Ünal, A., “Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders,” Materials Science and Technology, Vol.3, pp.1029-1039, 1987.
[37] Sedat Őzbilen, “Influence of atomizing gas on particle shape of Al and Mg powder,” Powder Technology. , Vol.102, Issue.2, Mar. 3, pp. 109-119, 1999.
[38] Ashgriz, N. and Givi, P., “Binary Collision Dynamics of Fuel Droplets,” Heat and Fluid Flow, Vol.8, No.3, pp.205-210, 1987.
[39] C. K. Chiang, J. Y. Poo ,and T. H. Lin, “Number of Result Drops in Binary Liquid Drop Collision,” Picast, Cofference Proceedings Vol.Ⅱ, pp.577-589, 1994.
[40] Orme, Melissa, “Experiment on Droplet Collisions, Bounce, Coalescence and Disruption,” Prog. Energy Combust. Sci. Vol.23, pp.65-79, 1997.
[41] 林明龍,噴霧粒子在側噴流衝擊下之動態特性,國立成功大學航太所碩士論文,2001。。
[42] 高韶豪,微型噴嘴單束噴霧流在側吹下之粒子分布,國立成功大學航太所碩士論文,2003。
[43] 陳品任,金屬噴霧在衝擊氣流作用下之霧化特性,國立成功大學航太所碩士論文,2005。
[44] Rein, M. “Phenomena of liquid droplet impact,” Fluid Dyn. Res., Vol.12, pp.61-93, 1993.
[45] Manzello, S.L., and Yang, J.C., “An experimental investigation of water droplet impingement on a heat wax surface,” International Journal of Heat and Mass Transfer, Vol.47, pp.1701-1709, 2004.
[46] 徐明生。內混式平面型液態金屬噴嘴之霧化機構及其在噴覆成型之應用。國立成功大學航太所博士論文,1999。
[47] Newbery, A. P., Rayment, T., and Grant, P.S., “A Particle image Velocity Investigation of In-flight and Deposition Behaviour of Steel Droplets during Electric Arc Sprayforming,” Materials Science and Engineering A Vol.383, pp.137-145, 2004.
[48] 王覺寬,康煜昌,徐明生,楊舒然,”氣助式平面型液態金屬霧化器特性研究,” 40th Conference on Aero. and Astro. Of ROC, Taichung, Taiwan, ROC, Dec, 1998