簡易檢索 / 詳目顯示

研究生: 李大興
Li, Da-Sing
論文名稱: 具渦流產生器之矩形鰭片鰭管式熱交換器之三維熱液動性能分析
3-D Thermal-Hydraulic Analysis for Rectangular finned-tube heat exchangers with vortex generators
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系碩士在職專班
Department of Mechanical Engineering (on the job class)
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 81
中文關鍵詞: 渦流產生器熱交換器計算流體力學
外文關鍵詞: vortex generators, heat exchangers, CFD-RC
相關次數: 點閱:92下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,渦流產生器(Vortex generaror)常是被考慮為被動式熱傳增強技術的一種,它是利用一些小型凸出物,以浮花壓製(emboss)、黏附(stamp)、衝孔(punch)…等加工方式結合於主要的熱交換表面上(如: 鰭片),主要是避免邊界層產生分離及降低摩擦力;其優點除了具有上述所言之一般鰭片的熱增強特性外,亦有較小的壓降;本研究係於具圓型管矩形鰭片之熱交換器,以對齊式( in-line )排列與交錯式(staggered)排列之鰭管式熱交換器為區分,於其鰭片上裝設渦流產生器,區分為VG0~VG3等形式,其中,VG0是不具渦流產生器的最初形式,而VG1~VG3分別是展開30°、45°、60°擴散排列之波浪型渦流產生器,並以計算流體力學軟體模擬真實的使用狀況來分析整體的流場及熱液動效率;結果發現,在熱傳因子j(Colburn factor)方面,對齊式(in-lined)排列之矩形鰭管式熱交換器的熱增強現象中,VG2(45°)較VG1(30°)上升了18%,VG3(60°)較VG2(45°)上升了13%,而VG1(30°)則較無裝設者上升了38%,而在交錯式(staggered)排列之矩形鰭管式熱交換器中,VG2(45°)較VG1(30°)上升了20%,VG3(60°)較VG2(45°)上升了27%,而VG1(30°)則較無裝設者上升了26%;相對而言,摩擦因子f(friction factor)部分,相較於無裝設渦流產生器者,較無裝設者之對齊式VG1(30°)約增加24.6%,VG2(45°)增加至35.7%,VG3(60°)則增加至48.6%,增加最多,而交錯式的VG1(30°)則約增加26.3%,VG2(45°)則增加至40.3%,VG3(60°)則增加至53.3%,在面積縮減率(1-A/Aplain )的部分,對齊式中的VG3(60°)最佳(26.8%縮減至20.2%),而交錯式的則是VG2(45°)最佳(29.3%縮減至25.1%)。

    Numerical analyses were carried out to study the 3-D heat transfer and flow in the rectangular finned-tube heat exchangers with inclined block shape vortex generators mounted behind the tubes. The study was performed for a variety of span angle over a range of flow conditions. In addition, numerical simulation was performed by a 3-D turbulence analysis of the heat transfer and fluid flow. There were four model types for this research, including VG0 to VG3. VG0 was the initial type which without vortex generators, and VG1 to VG3 represented the span angle 30°, 45° and 60°. The numerical result indicated these effects were intensified as the span angle is increased. Furthermore, no matter the arrangement type (in-lined and staggered), the case of 60° span angle provided the best heat transfer and Colburn factor augmentation, of course, the pressure drop and friction factor higher than the other, In Colburn factor, the 60° span angle case (VG3) is higher than without vortex generator 53.1% at in-line, staggered is higher 56.8%; In friction factor, the 60° span angle case (VG3) is higher than without vortex generator 48.6% at in-line, staggered is higher 53.3%. A reduction in fin area of 26.8% may be obtained if vortex generators embedded fins are used at in-lined arrangement rectangular finned-tube heat exchangers, and staggered arrangement reduction in fin area is 29.3% ~25.1%

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 符號說明 XI 第一章 緒論 1 第二章 理論分析 13 2.1 物理模型規格 13 2.2流場統御方程式 13 2.3牆函數 16 2.4 邊界條件 17 2.4-1進口邊界條件 17 2.4-2出口邊界條件 17 2.4-3週期性邊界條件 18 2.4-4固體表面邊界條件 18 2.4-5固體-液體交界處邊界條件 18 2.4-6紐塞數、阻力係數、Colburn因子計算 19 第三章 數值方法 28 3.1 建立格點 28 3.2 格點模型與格點測試 29 3.3統禦方程式之差分方程式的建立 29 3.4收斂條件 31 第四章 結果與討論 36 4.1板鰭式與矩形鰭片式之熱傳效率比較 36 4.2矩形鰭片式之各渦流產生器展開角度熱傳效率比較 37 第五章 結論 73 參考文獻 76 自述 81

    1. Kays, W. M., and London,A. L., “Compact heat exchanger”, 3rd.,McGraw-Hill,New York, 1984.
    2. Webb, R.L., “Principles of enhanced heat transfer”,John Wiley &Sons, New York, 1994.
    3. Jang, J. Y.,Wu, M. C., and Chang, W. J., “Numerical and experimental studies of three-dimensional plate-fin and tube heat exchanger”, International Journal Heat and Mass Transfer, Vol.39,No.14, pp. 3057-3066, 1996.
    4. Ay, H., Jang, J. Y., and Yeh, J. N., “Local Heat Transfer Measurements of Plate Finned-Tube Heat Exchangers by Infrared Thermography”, International Journal Heat and Mass Transfer, Vol.45, No.20, pp.4069-4078, 2002.
    5. Jang, J.Y., and Chen, L. K., “Numerical analysis of heat transfer and fluid-flow in a three-dimensional wavy-fin and tube heat exchanger”, International Journal Heat and Mass Transfer, Vol.40,No.16,1997.
    6. Wang, C. C., Jang, J. Y. and Chiou, N. F., “A Heat Transfer and Friction Correlation for Wavy Fin and Tube Heat Exchangers”, International Journal of Heat and Mass Transfer, Vol. 42, No.10, pp. 1919-1924, 1999.
    7. Wang, C. C., Jang, J. Y. and Chiou, N. F., “Effects of Waffle Height on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchangers”, Heat Transfer Engineering, Vol.20, No. 3, pp. 45-56, 1999.
    8. Jang, J. Y. and Yang, J. Y., Experimental and 3-D Numberical Analysis of the Thermal-Hydraulic Characteristics of Elliptic Finned-Tube Heat Exchangers, Heat Transfer Engineering, Vol.19, No.4, pp. 55-67, 1998.
    9. Liu, M. S., Leu, J. S., Liaw, J. S., and Wang, C. C., 3-D Simulation of the Thermal-Hydraulic Characteristics of Louvered Fin-and-Tube Heat Exchangers with Oval tubes, Symposoum on The Use of Computational Fluid Dynamics in Heat Exchanger Design, 2000 ASHRAE ANNUAL MEETING, Minneapolis, MN, June 24-28.
    10. Leu, J. S., Chen, S. L., and Jang, J.Y., “Heat Transfer and Fluid Flow in Rectangular Fin and Elliptic Tube Heat Exchangers under Dry and Dehumidifying Conditions”, Journal of Enhanced Heat Transfer, Vol.11, pp. 43-60, 2004.
    11. Atkin, K. N., Drakulic, R., Heikal, M. R., and Cowell, T.A., “Two-and three-dimensional numerical ,odes of flow and heat transfer over louvered fin arrays in compact heat exchanger” International Journal Heat and Mass Transfer Vol.41 pp.4063-4080, 1998.
    12. Wang, C. C.,Chang, Y. P., Chi, and K. Y., Chang, Y. J., “A study of non-redirection louver fin and tube heat exchanger”, Proc. Instn. Mech engrs, Vol.212 part C, 1998.
    13. Wang, C. C., Chi, K. Y., and Chang, K. Y., “An experimental study of heat transfer and friction characteristics of typical louver fin and tube heat exchangers”, International Journal Heat and Mass Transfer Vol.41, 1998.
    14. Hatada, T., and Senshu T., “Experimental study on heat transfer characteristic og convex louver fin for air conditioning heat exchangers” ASME paper 84-HT-74, 1984.
    15. Bemisder, C. H., “Heat transfer: a contemporary analytical tool for developing improce heat transfer surfaces”, ASHRAE Trans. Part1, 1987.
    16. Hatada, T., “Improved heat transfer performamce of air coolers by strip fins controlling air flow distribution”, ASHRAE Trans. Part1. 1989.
    17. ESDU 93024,Engineering Science Data Unit,”Vortex Generators for Control of Shock-Induced Separation Part 1:Introduction and Aerodynamics, 1993.
    18. Jacobi A. M., and Shah R. K.,”Heat Transfer Surfaces Enhancement through the Use of Longitudinal Vortices:A Review of Recent Progress”,Experimental Thermal and Fluid Science,Vol.11,pp.295-309, 1995.
    19. Fiebig M.,”Vortices Generators and Heat Transfer”,Trans. IchemE,Vol.76, Part A, pp.108-123, 1998.
    20. Edwards F. J., and Alker G. J. R., “The Improvement of Forced Convection Surface Heat Transfer Using Surface Protrusions in the Form of (A) cubes and (B) Vortex Generators, Proc. 5th Int.Heat Transfer Conf.,Tokyo, Vol.2, pp244-248, 1974.
    21. Tiggelbeck S., Mitra N. K., and Fiebig M., “Experimental Investigation of Heat transfer Enhancement and Flow Losses in a channel with Double Rows of Longitudinal Vortex Generators”, International Journal of Heat Mass Transfer, Vol.36 No.9, pp.2327-2337, 1993.
    22. Biswas, G., Mitra N.K., and Fiebig M., Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators, International Journal of Heat and Mass Transfer, Vol. 37, pp.283-291, 1994.
    23. Fiebig M., Valencia A., and Mitra N.K., “Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers”, Experimental Thermal and Fluid Science, Vol.7, pp.287-295, 1993.
    24. Valencia A., Fiebig M., and N. K. Mitra, “Heat Transfer Enhancement by Longitudinal Vortices in a Fin-Tube Heat Exchanger Element with Flat Tubes.”, ASME j. of Heat Transfer, Vol.118, pp.209-211, 1996.
    25. Wang, C.C., Lo, J., Lin, Y.T. and Liu, M.S., “Flow Visualization of Wavy-Type Vortex Generator Having Inline Fin-Tube Arrangement”, International Journal Heat and Mass Transfer, Vol. 45, No.9, pp.1933-1944, 2002.
    26. Lin, C.N. and Jang, J.Y., “Conjugate Heat Transfer and Fluid Flow Analysis in Fin-Tube Heat Exchangers with Wave-type Vortex Generators”, Journal of Enhanced Heat Transfer, Vol. 9, pp.123-136,2002.
    27. Wu, M. J., and Tao, W. Q., “Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy princip,” Applied Thermal Engineering, Vol. 27, pp. 2609-2617, 2007.
    28. Leu, J. S., Wu, Y. H. and Jang, J. Y., “Heat trans and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4327-4338, 2004.
    29. Wang, Q., Chen, Q., Wang, L., Zeng, M., Huang, Y., and Xiao, Z., “Experimental study of heat transfer enhancement in narrow retangular channel with longitudinal vortex generatoes,” Nuclear Engineering and Design, Vol. 237 , pp.686-693, 2007.
    30. Launder, B. E. and Spalding, A. D., 1972, Mathematical Models of Turbulence, pp. 90-100, Academic, London.
    31. Chen, Y. S., and Kim, S. W., 1987, Computation of Turbulent Flows Using an Extended Turbulence Closure Model, NASA CR-179204.
    32. Wang, T. S., and Chen, Y. S., 1993, Unified Navier-Stokes Flow Field and Performance Analysis of Liquid Rocket Engines, AIAA Journal, Vol. 9, No. 5, pp. 678-685.
    33. Liakopoulos, A., Explicit Representations of the Complate Velocity Profile in a Turbulent Boundary Layer , AIAA Journal, Vol.22, pp.844-846, 1984.
    34. Biswas, G., Mitra, H.K. and Fiebig, M., Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Tyoe Vortex Generators, International Journal of Heat and Mass Transfer, Vol. 37, No.2, pp. 283-291, 1994.
    35. Webb, R. L., Principles of Enhanced Heat Transfer, John Wiley & Sons, Inc, 1994.

    下載圖示 校內:2011-01-28公開
    校外:2011-01-28公開
    QR CODE