| 研究生: |
張文宗 Zhang, Wen-Zong |
|---|---|
| 論文名稱: |
光極化編碼多重擷取信號隱匿於公用傳輸通道之研究 Optical Steganography to a Public Channel by Stealth Spectral-Polarization OCDMA Signals |
| 指導教授: |
黃振發
Haung, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 光隱寫術 、光分碼多重擷取 、頻域極化編碼 、啁啾光纖布拉格光柵 |
| 外文關鍵詞: | optical steganography, optical code-division multiple-access, spectral polarization coding, chirped fiber-Bragg grating |
| 相關次數: | 點閱:169 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過在公用二元相位偏移調變(public binary phase-shift keying, BPSK)通道中傳輸隱匿的光分碼多重擷取(optical code-division multiple-access, OCDMA)信號來實現光隱寫術(optical steganography)系統。我們結合頻譜幅度編碼(spectral amplitude coding, SAC)和極化分集(polarization diversity)的概念來設計我們所提出的編解碼器。極化分光器(polarization beam splitters, PBS)和陣列波導光柵(arrayed waveguide grating, AWG)則是被用來建構採用非相干光源的頻域極化編碼(spectral-polarization coding, SPC)系統。希望在系統中發送隱藏信息的用戶的簽章碼(Signature code)是通過選擇Walsh-Hadamard矩陣中任一行來獲得的Walsh-Hadamard code。
光學隱寫術的目的在於用戶可以發送隱匿的私有信號藏在公用通道之中傳輸,而不被他人注意,以增加通信系統的保密性。可以通過啁啾光纖布拉格光柵(chirped fiber-Bragg gratings, CFBGs)來將訊號在時域上隱藏在公用通道之中,而頻域上則是藉由頻域極化編碼的技術來達成。在此篇論文中我們將分別討論隱匿傳輸於有線以及自由空間傳輸(free space optical, FSO)的公用頻道中的情況
接收端可以通過光分碼多重擷取解碼器中的相關性檢測和平衡檢測法來提出秘密信息,同時來自公共通道的其他信號則是會根據傳輸方式以特定的方法消除掉。在公共通道的接收端中,在二元相位偏移調變的解調過程消除了隱匿信號,使得公用通道的訊號不會受隱匿信號的影響。研究的結果顯示在隱匿訊號、公用訊號以及雜訊分別為-5, 0和-3dBm 的情況下,隱匿訊號可以安全地隱藏在公用通道之中,我們提出的光隱寫系統可以提供高保密性。此外在傳輸功率為20dBm的情況下,光纖傳輸最遠為75公里而自由空間傳輸則是380公尺。
An optical steganography scheme is proposed to a public binary phase-shift keying (BPSK) channel by transmitting stealth optical code-division multiple-access (OCDMA) signal. We combine the concepts of spectral amplitude coding (SAC) and polarization diversity to design the proposed coder/decoder (codecs). Polarization beam splitters (PBSs) and arrayed waveguide gratings (AWGs) are used to construct the spectral-polarization coding (SPC) system with incoherent optical source. The signature code of the user who wants to transmit the stealth information in the system is Walsh-Hadamard code. It is obtained by selecting the row of the Walsh-Hadamard matrix.
The purpose of optical steganography is that user can transmit private signal which is hidden in the existing public channel without attentions by others and increase the secrecy of the communication system. The stealth signal can be hidden under the public channel in temporal domain and spectral domain by chirped fiber-Bragg gratings (CFBGs) and SPC techniques. Steganography transmissions with optical fiber and free space optical (FSO) links are discussed in this thesis.
At the receiver side, the secret information is extracted by correlation-detection and balanced-subtraction in the OCDMA decoder. At the same time, the other signals from public channel is also reduced with specific methods according to the way of transmission. At the demodulator of public channel, the procedure of BPSK demodulation eliminates the stealth signal so that the public signal wouldn’t affect by stealth signal. The results of this study show that the stealth signal is safely hidden in public channel and highly security is available in our proposed optical steganography system when the average power of the stealth signal, public signal and public noise are -5 dBm, 0 dBm and -3 dBm, respectively. In addition, the transmission distances with fiber and FSO links are 75 km and 380 m when the transmitter power is 20 dBm.
[1] B. Wu, B. J. Shastri, P. Mittal, A. N. Tait and P. R. Prucnal, “Optical Signal Processing and Stealth Transmission for Privacy,” in IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 7, pp. 1185-1194, Oct. 2015.
[2] G. Zeng, Quantum Private Communication, Jointly published with Higher Education Press, 2010.
[3] M. P. Fok and P. R. Prucnal, “All-optical encryption for optical network with interleaved waveband switching modulation,”2009 Conference on Optical Fiber Communication - incudes post deadline papers, San Diego, CA, pp. 1-3, May 2009.
[4] Z. Fei et al., “Optical steganographic transmission of spectral-phase-encoded OCDMA signal over a public DPSK channel,” 2013 22nd Wireless and Optical Communication Conference, Chongqing, pp. 552-554, May 2013.
[5] T. Jamil, “Steganography: the art of hiding information in plain sight,” in IEEE Potentials, vol. 18, no. 1, pp. 10-12, Feb/Mar. 1999.
[6] S. Channalli, A. Jadhav, “Steganography An Art of Hiding Data,” International Journal on Computer Science and Engineering, vol.1(3), pp. 137-141, Dec. 2009.
[7] X. Hong, D. Wang, L. Xu, and S. He, “Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering,” Opt. Express, vol.18, no.12, pp. 12415-12420, Jun. 2010.
[8] Y. Chen, R. Wang, T. Fang, T. Pu, P. Xiang, H. Zhu, and J. Zhang, “Stealth transmission of temporal phase en/decoded polarization modulated code-shift-keying optical code division multiple access signal over synchronous digital hierarchy network with asynchronous detection,” Opt. Eng. vol. 3, no. 6, pp.066103, Jun. 2014.
[9] H. Zhu, R. Wang, T. Pu, Y. Chen, T. Fang, J. Zheng, and G. Su, “Complementary coding optical stealth transmission based on amplified spontaneous emission light source,” Opt. Express, vol. 22, no. 23, pp.28346-28352, Nov. 2014.
[10] B. Wu and E. Narimanov, “Secure stealth transmission over an existing public fiber-optical network,” 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, pp. 1-3, 2006.
[11] B. Wu and E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14, pp. 3738-3751, May 2006
[12] K. Kravtsov, B. Wu, I. Glesk, P. R. Prucnal and E. Narimanov, “Stealth Transmission over a WDM Network with Detection Based on an All-Optical Thresholder,” LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, Lake Buena Vista, FL, pp. 480-481, Oct. 2007.
[13] B. Wu, A. Agrawal, I. Glesk, E. Narimanov, S. Etemad, and P. R. Prucnal, “Steganographic fiber-optic transmission using coherent spectral phase-encoded optical CDMA,” Conference on Lasers and Electro-Optics, paper CFF5, 2008.
[14] Z. Wang and P. R. Prucnal, “Optical Steganography Over a Public DPSK Channel With Asynchronous Detection,” in IEEE Photonics Technology Letters, vol. 23, no. 1, pp. 48-50, Jan.1 2011.
[15] B. Wu, Alexander N. Tait, Matthew P. Chang, and Paul R. Prucnal, “WDM optical steganography based on amplified spontaneous emission noise,” Opt. Lett. 39, 5925-5928, Oct. 2014.
[16] B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express, vol. 21, no. 2, pp. 2065–2071, Jan. 2013.
[17] B. Wu, M. P. Chang, N. R. Caldwell, M. E. Caldwell, and P. R. Prucnal,“Amplifier noise based on optical steganography with coherent detection,” Coherent Opt. Phenom., vol. 2, pp. 13–18, Dec. 2014.
[18] R. Dixon, “Why spread spectrum?,” IEEE Commun. Soc. Mag., vol. 13, pp. 21-25, Jul. 1975.
[19] R. Dixon, “The spread spectrum concept,” IEEE Transactions on Communications, vol. 25, pp. 748-755, Aug. 1977.
[20] E. Marom and O.G. Ramer, “Encoding-decoding optical fiber network,” Electron.Lett., vol. 14, pp. 48, Feb. 1978.
[21] J. A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Transactions on Communications, vol. 37, no. 8, pp.824-833, Aug. 1989.
[22] J. A. Salehi and C. A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 834-842, Aug. 1989.
[23] R. Yim, “New approaches to optical code-division multiple access.” M.E. thesis, McGill University, Montreal, Canada, Sep. 2002.
[24] D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Letter, vol. 5, no. 4, pp. 479-482, April 1993.
[25] M. Kavehrad and D. Zaccarin, “Optical code- division-multiplexed systems based on spectral encoding of non-coherent sources,” in Journal Lightwave Technol., vol. 13, no. 3, pp. 534-545, March 1995.
[26] J. A. Salehi, A. M. Weiner and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” in Journal of Lightwave Technology, vol. 8, no. 3, pp. 478-491, Mar. 1990.
[27] G. P. Agrawal, Fiber-Optic Communications Systems, third edition, pp.38-40.
[28] E. Hecht, Optics, fourth edition, pp.325-328.
[29] E. Collett, Field Guide to Polarization, SPIE Press, Bellingham, WA, 2005.
[30] J. F. Huang, C. C. Yang, S. P. Tseng, “Complementary Walsh–Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers,” Optics Communications, volume 229, Issues 1–6, pp. 241-248, Jan. 2004.
[31] C.T. Yen, H.C. Cheng, Y.T. Chang, and W.B. Chen, “Performance Analysis of Dual Unipolar/Bipolar Spectral Code in Optical CDMA Systems,” Journal of Applied Research and Technology, volume 11, Issue 2, Pages 235–241, April 2013
[32] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N×N wavelength multiplexer,” J. Lightwave Technol., vol. 13, no. 3, pp.447-455, Mar. 1995.
[33] C. Wang, J. Yao, “Fiber Bragg gratings for microwave photonics subsystems,” Opt. Express 21, pp.22868-22884, Sep. 2013.
[34] A. Malik and P. Singh, “Free Space Optics: Current Applications and Future Challenges,” International Journal of Optics, vol. 2015, pp. 1-8, Sep. 2015.
[35] R. K. Z. Sahbudin, M. Kamarulzaman, S. Hitam, M. Mokhtar, and S. B. A. Anas, “Performance of SAC OCDMA-FSO communication systems,” Optik, vol. 124, no. 17, pp. 2868–2870, Sep. 2013.