| 研究生: |
許惠嵐 Hsu, Hui-Lan |
|---|---|
| 論文名稱: |
台灣白花蝴蝶蘭第七條染色體上遺傳標誌的染色體圖譜 Chromosome mapping of genetic markers on chromosome 7 Phalaenopsis aphrodite subsp. formosana |
| 指導教授: |
張松彬
Chen, Song-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 蝴蝶蘭屬 、螢光原位雜合 、粗絲期染色體 、染色體圖譜 |
| 外文關鍵詞: | Phalaenopsis orchid, Fluorescent in situ hybridization (FISH), pachytene chromosome, chromosome mapping |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蘭科(Orchidaceae)是顯花植物中最大的一科,包含25000個以上的物種。蝴蝶蘭屬(Phalaenopsis)為其中一屬,在全球園藝市場中屬高價經濟作物。研究蝴蝶蘭屬植物的基因體可增進我們對於蘭科植物的了解。然而截至今日,只有一個蝴蝶蘭屬物種的基因體組被大致解序。台灣白花蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)在蝴蝶蘭育種中是一重要親本,也是蘭科植物的模式物種之一。雖然其基因及基因組資訊已可得,但由於不同版本的遺傳圖譜(genetic map)有所差異,導致台灣白花蝴蝶蘭序列拼裝上的困難。染色體圖譜(chromosome map)可扮演一個檢驗序列拼裝正確性的角色,但台灣白花蝴蝶蘭的中期染色體小,若用於檢驗序列拼裝會受限於解析度偏低而無法區分不同遺傳標誌(genetic markers)的相對位置。本研究建立了一個改良過的滴落法(drop method),可用於製備台灣白花蝴蝶蘭高解析度粗絲期(pachytene)染色體,並且檢驗粗絲期染色體於螢光原位雜合(fluorescent in situ hybridization, FISH)技術上的適用性。藉由定位屬於D_L10連鎖群的四個鷹架(scaffold) DNA至台灣白花蝴蝶蘭粗絲期染色體上,我們檢測不同版本的遺傳圖譜其正確性,並確認D_L10連鎖群位於台灣白花蝴蝶蘭第七條染色體上。同時,我們觀察到在第七條染色體不同區域,其重組頻率(recombination frequency)會有所差異。另外,台灣白花蝴蝶蘭粗絲期染色體也可應用至雷射捕捉顯微切割(laser capture microdissection, LCM)技術上,未來有潛力建構個別染色體資料庫(chromosome-specific library)。由滴落法所製備的台灣白花蝴蝶蘭粗絲期染色體可以應用在染色體圖譜的建立上,可整合遺傳圖譜及實質圖譜,加速台灣白花蝴蝶蘭的基因體組及細胞遺傳學研究,進而增進我們對於蝴蝶蘭屬植物的了解。
Orchidaceae is the largest flowering family, which consists of at least 25,000 species. Phalaenopsis, an Orchidaceae genus, is a high-value ornamental plant in global horticulture market. Studying Phalaenopsis genomes will benefit our knowledge of orchid biology. Up to now, there is only one species that its draft genome sequence has been determined in Phalaenopsis. Phalaenopsis aphrodite subsp. formosana is an important parental material in breeding and one of model organisms for studying orchid biology. Due to different assembly strategies, they resulted in inconsistent linkage groups. Cytogenetic maps can ensure the accuracy of linkage groups, but small-size metaphase chromosomes of P. aphrodite limit cytogenetic researches and applications. In this study, we developed a modified drop method for pachytene chromosomes preparation in P. aphrodite and examined its applicability for fluorescent in situ hybridization (FISH) technique. By mapping four scaffolds of D_L10 linkage group to high-resolution pachytene chromosomes, we validated the genome assembly of P. aphrodite, and found that there are differences of recombination frequency among different chromosome regions. Also, the chromosome which D_L10 linkage group located on was identified as chromosome 7 of P. aphrodite. Additionally, we examined that pachytene chromosomes of P. aphrodite can apply on chromosome laser capture microdissection (LCM) which could establish chromosome-specific library. The development of modified drop method for pachytene chromosome preparation would accelerate the integration of genetic map and chromosome map, and also benefit the genomic and cytogenetic researches in P. aphrodite.
Begum, R., S.S. Alam, G. Menzel, and T. Schmidt. 2009. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh. Ann Bot. 104:863-872.
Belarmino, M.M., and M. Mii. 2000. Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Reports. 19:435-442.
Cabral, J.S., L.P. Felix, and M. Guerra. 2006. Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genetics and Molecular Biology. 29:659-664.
Cai, J., X. Liu, K. Vanneste, S. Proost, W.-C. Tsai, K.-W. Liu, L.-J. Chen, Y. He, Q. Xu, C. Bian, Z. Zheng, F. Sun, W. Liu, Y.-Y. Hsiao, Z.-J. Pan, C.-C. Hsu, Y.-P. Yang, Y.-C. Hsu, Y.-C. Chuang, A. Dievart, J.-F. Dufayard, X. Xu, J.-Y. Wang, J. Wang, X.-J. Xiao, X.-M. Zhao, R. Du, G.-Q. Zhang, M. Wang, Y.-Y. Su, G.-C. Xie, G.-H. Liu, L.-Q. Li, L.-Q. Huang, Y.-B. Luo, H.-H. Chen, Y. Van de Peer, and Z.-J. Liu. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet. 47:65-72.
Cheng, Z., G.G. Presting, C.R. Buell, R.A. Wing, and J. Jiang. 2001. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics. 157:1749-1757.
Christenson, E.A., and I.P. Alliance. 2001. Phalaenopsis: A Monograph. Timber Press.
D’emerico, S., I. Galasso, D. Pignone, and A. Scrugli. 2001. Localization of rDNA loci by fluorescent in situ hybridization in some wild orchids from Italy (Orchidaceae). Caryologia. 54:31-36.
Dang, J., Q. Zhao, X. Yang, Z. Chen, S. Xiang, and G. Liang. 2015. A modified method for preparing meiotic chromosomes based on digesting pollen mother cells in suspension. Mol Cytogenet. 8:80.
Danilova, T.V., and J.A. Birchler. 2008. Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma. 117:345-356.
Dong, F., J. Song, S.K. Naess, J.P. Helgeson, C. Gebhardt, and J. Jiang. 2000. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet. 101:1001-1007.
Findley, S.D., S. Cannon, K. Varala, J. Du, J. Ma, M.E. Hudson, J.A. Birchler, and G. Stacey. 2010. A fluorescence in situ hybridization system for karyotyping soybean. Genetics. 185:727-744.
Fominaya, A., C. Linares, Y. Loarce, and E. Ferrer. 2005. Microdissection and microcloning of plant chromosomes. Cytogenet Genome Res. 109:8-14.
Fukui, K., and K. Iijima. 1991. Somatic chromosome map of rice by imaging methods. Theor Appl Genet. 81:589-596.
Gall, J.G., and M.L. Pardue. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences of the United States of America. 63:378-383.
Gerlach, W.L., T.E. Miller, and R.B. Flavell. 1980. The nucleolus organizers of diploid wheats revealed by in situ hybridization. Theor Appl Genet. 58:97-100.
Gill, N., S. Findley, J.G. Walling, C. Hans, J. Ma, J. Doyle, G. Stacey, and S.A. Jackson. 2009. Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol. 151:1167-1174.
Hans de Jong, J., P. Fransz, and P. Zabel. 1999. High resolution FISH in plants – techniques and applications. Trends in plant science. 4:258-263.
He, Q., Z. Cai, T. Hu, H. Liu, C. Bao, W. Mao, and W. Jin. 2015. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). BMC Plant Biol. 15:105.
He, W., Y.G. Liu, M. Smith, and M.W. Berns. 1997. Laser microdissection for generation of a human chromosome region-specific library. Microscopy and Microanalysis. 3:47-52.
Hsiao, Y.Y., Y.W. Chen, S.C. Huang, Z.J. Pan, C.H. Fu, W.H. Chen, W.C. Tsai, and H.H. Chen. 2011. Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC genomics. 12:1.
Iovene, M., S.M. Wielgus, P.W. Simon, C.R. Buell, and J. Jiang. 2008. Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics. 180:1307-1317.
Jiang, J., and B.S. Gill. 2006. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome. 49:1057-1068.
John, H.A., M.L. Birnstiel, and K.W. Jones. 1969. RNA-DNA Hybrids at the Cytological Level. Nature. 223:582-587.
Kao, Y.Y., S.B. Chang, T.Y. Lin, C.H. Hsieh, Y.H. Chen, W.H. Chen, and C.C. Chen. 2001. Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Annals of Botany. 87:387-395.
Kato, A., P.S. Albert, J.M. Vega, and J.A. Birchler. 2006. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotechnic & histochemistry : official publication of the Biological Stain Commission. 81:71-78.
Kato, A., J.C. Lamb, and J.A. Birchler. 2004. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences of the United States of America. 101:13554-13559.
Kim, J.S., P.E. Klein, R.R. Klein, H.J. Price, J.E. Mullet, and D.M. Stelly. 2005. Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics. 169:955-965.
Kirov, I., M. Divashuk, K. Van Laere, A. Soloviev, and L. Khrustaleva. 2014a. An easy "SteamDrop" method for high quality plant chromosome preparation. Mol Cytogenet. 7:21.
Kirov, I., K. Van Laere, J. De Riek, E. De Keyser, N. Van Roy, and L. Khrustaleva. 2014b. Anchoring linkage groups of the Rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers. PloS one. 9:e95793.
Kirov, I.V., K. Van Laere, and L.I. Khrustaleva. 2015. High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa. BMC Genet. 16:74.
Kulikova, O., G. Gualtieri, R. Geurts, D.J. Kim, D. Cook, T. Huguet, J.H. de Jong, P.F. Fransz, and T. Bisseling. 2001. Integration of the FISH pachytene and genetic maps of Medicago truncatula. The Plant journal : for cell and molecular biology. 27:49-58.
Lee, Y.I., and M.C. Chung. 2008. Identification of genome relationships among Paphiopedilum species by genomic and fluorescent in situ hybridization. Acta Horticulturae. 766:331-334.
Lin, C.C., Y.H. Chen, W.H. Chen, C.C. Chen, Y.Y. Kao, and K. Yen-Yu. 2005. Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Botanical Bulletin of Academia Sinica. 46.
Lin, S., H.C. Lee, W.H. Chen, C.C. Chen, Y.Y. Kao, Y.M. Fu, Y.H. Chen, and T.Y. Lin. 2001. Nuclear DNA contents of Phalaenopsis sp and Doritis pulcherrima. Journal of the American Society for Horticultural Science. 126:195-199.
Lou, Q., Y. He, C. Cheng, Z. Zhang, J. Li, S. Huang, and J. Chen. 2013. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber. PloS one. 8:e62676.
Lou, Q., M. Iovene, D.M. Spooner, C.R. Buell, and J. Jiang. 2010. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma. 119:435-442.
Lu, H.C., H.H. Chen, W.C. Tsai, W.H. Chen, H.J. Su, D.C. Chang, and H.H. Yeh. 2007. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143:558-569.
Ludecke, H.J., G. Senger, U. Claussen, and B. Horsthemke. 1989. Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature. 338:348-350.
Matsunaga, S., K. Schütze, I.S. Donnison, S.R. Grant, T. Kuroiwa, and S. Kawano. 1999. Single pollen typing combined with laser‐mediated manipulation. The Plant Journal. 20:371-378.
McClintock, B. 1929. Chromosome Morphology in Zea Mays. Science. 69:629.
Meimberg, H., S. Thalhammer, A. Brachmann, B. Muller, L.A. Eichacker, W.M. Heckl, and G. Heubl. 2003. Selection of chloroplasts by laser microbeam microdissection for single-chloroplast PCR. Biotechniques. 34:1238-1243.
Moscone, E.A., R. Samuel, T. Schwarzacher, D. Schweizer, and A. Pedrosa-Harand. 2007. Complex rearrangements are involved in Cephalanthera (Orchidaceae) chromosome evolution. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 15:931-943.
Ohmido, N., K. Fukui, and T. Kinoshita. 2010. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc Jpn Acad Ser B Phys Biol Sci. 86:103-116.
Rick, C.M., and D.W. Barton. 1954. Cytological and Genetical Identification of the Primary Trisomics of the Tomato. Genetics. 39:640-666.
Rook, M.S., S.M. Delach, G. Deyneko, A. Worlock, and J.L. Wolfe. 2004. Whole genome amplification of DNA from laser capture-microdissected tissue for high-throughput single nucleotide polymorphism and short tandem repeat genotyping. Am J Pathol. 164:23-33.
Rothfels, K.H., and L. Siminovitch. 2009. An Air-Drying Technique for Flattening Chromosomes in Mammalian Cells GrownIn Vitro. Stain Technology. 33:73-77.
Sandery, M.J., J.W. Forster, S.R. Macadam, R. Blunden, R.N. Jones, and S.D.M. Brown. 1991. Isolation of a sequence common to A- and B-chromosomes of rye (Secale cereale) by microcloning. Plant Molecular Biology Reporter. 9:21-30.
Scalenghe, F., E. Turco, J.E. Edstrom, V. Pirrotta, and M. Melli. 1981. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma. 82:205-216.
Scutt, C.P., Y. Kamisugi, F. Sakai, and P.M. Gilmartin. 1997. Laser isolation of plant sex chromosomes: studies on the DNA composition of the X and Y sex chromosomes of Silene latifolia. Genome. 40:705-715.
Shearer, L.A., L.K. Anderson, H. de Jong, S. Smit, J.L. Goicoechea, B.A. Roe, A. Hua, J.J. Giovannoni, and S.M. Stack. 2014. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3. 4:1395-1405.
Sherman, J.D., and S.M. Stack. 1995. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics. 141:683-708.
Shindo, K., and H. Kamemoto. 1963. Karyotype Analysis of Some Species of Phalaenopsis. Cytologia. 28:390-398.
Siroky, J. 2008. Chromosome landmarks as tools to study the genome of Arabidopsis thaliana. Cytogenet Genome Res. 120:202-209.
Stack, S.M., S.M. Royer, L.A. Shearer, S.B. Chang, J.J. Giovannoni, D.H. Westfall, R.A. White, and L.K. Anderson. 2009. Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res. 124:339-350.
Tang, X., D. Szinay, C. Lang, M.S. Ramanna, E.A. van der Vossen, E. Datema, R.K. Lankhorst, J. de Boer, S.A. Peters, and C. Bachem. 2008. Cross-species bacterial artificial chromosome–fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics. 180:1319-1328.
Tonnies, H. 2002. Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med. 8:246-250.
Trask, B.J. 1991. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in genetics : TIG. 7:149-154.
Wai, C.M., P.H. Moore, R.E. Paull, R. Ming, and Q. Yu. 2012. An integrated cytogenetic and physical map reveals unevenly distributed recombination spots along the papaya sex chromosomes. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 20:753-767.
Wang, C.J., L. Harper, and W.Z. Cande. 2006. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. The Plant cell. 18:529-544.
Weimer, J., M. Kiechle, and N. Arnold. 2000. FISH-microdissection (FISH-MD) analysis of complex chromosome rearrangements. Cytogenetics and cell genetics. 88:114-118.
Yasuhiko, M. 2005. Perspectives in molecular cytogenetics of wheat. Wheat Information Service. 100:17-31.
Zhong, X.-B., J.H. de Jong, and P. Zabel. 1996a. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescencein situ hybridization (FISH). Chromosome Research. 4:24-28.
Zhong, X.-b., P.F. Fransz, J. Wennekes-van Eden, P. Zabel, A. Van Kammen, and J.H. de Jong. 1996b. High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescencein-situ hybridisation. Plant Molecular Biology Reporter. 14:232-242.