| 研究生: |
王杰恩 Wang, Chieh-En |
|---|---|
| 論文名稱: |
橫向等向性磁電彈材料單一分量表面波之傳播 One-component Surface Wave Propagating in Transversely Isotropic Magneto-Electro-Elastic Materials |
| 指導教授: |
宋見春
Sung, Jen-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | :磁電彈材料 、N矩陣 、單一分量表面波 |
| 外文關鍵詞: | magneto-electro-elastic, N matrix, one-component surface waves |
| 相關次數: | 點閱:150 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究單一分量表面波於橫向等向性磁電彈材料之傳播行為。文中首先介紹廣義Stroh與廣義Lekhnitskii公式,其次應用兩種方法推導橫向等向性磁電彈材料的 矩陣元素之顯示;文中進一步利用Lekhnitskii公式推導穩態問題之下的特徵關係。由此關係探討單一分量表面波於半平面橫向等向性磁電彈材料傳播的條件,最後針對鈦酸鋇與四氧二鐵鈷之複合磁電彈材料(BaTiO3-CoFe2O4)討論單一分量表面波傳播的可能性。
This thesis is to investigate one-component surface waves propagating in transversely isotropic magneto-electro-elastic materials. It is known that one-component surface wave exists for certain special anisotropic elastic materials. To investigate whether one-component surface wave exists in magneto-electro-elastic materials and the corresponding conditions for the existence, the explicit expressions of matrix for magneto-electro-elastic materials are derived for static problems. Furthermore, the steady state eigenvalue system for the Lekhnitskii formalism is also established in this thesis. Finally, the conditions derived for the existence of one-component surface waves are discussed by an example for BaTiO3-CoFe2O4 material.
[1] Alshits, V. I., Darinskii, A.N., “On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties,” Wave Motion, Vol. 16, pp. 265-283 (1992).
[2] Barnett, D. M., “The Behaviors of Elastic Surface Waves Polarized in a Plane of Material Symmetry I: addendum,” Royal Society, Vol. 433, pp. 699-710 (1991).
[3] Barnett, D. M., Chadwick, P., ”The existence of one-component surface waves and exceptional subsequent transonic state of type 2,4, and EI in anisotropic elastic media,” Modern theory of anisotropic elasticity and applications, pp. 199-214 (1991).
[4] Boomgaard, J. V. D., Terrell, D. R., Born, R. A. J., Giller, H. F. J. I., “An in situ grown eutectic magnetoelectric composite material ,Part 1: composition and unidirectional solidification,” Journal of Materials Science, Vol. 9, pp. 1705-1709 (1974).
[5] Chadwick, P., “Some remarks on the existence of one-component surface waves in elastic materials with symmetry,” Phys. Scripta, Vol. 44, pp. 94-97 (1992).
[6] Chen, J. Y., Pan, E., Chen, H. L., “Wave propagate in magneto-electro-elastic multilayered plates” International Journal of Solids and Structures, Vol. 44, pp. 1073-1085 (2007).
[7] Du, J., Jin, X., Wang, J., “Love wave propagation in layered magneto-electro-elastic structures with initial stress,” Acta Mechanica, Vol. 192, pp. 169-189 (2007).
[8] Feng, W. J., Pan, E., Wang, X., “Rayleigh waves in magneto-electro-elastic half planes.” Acta. Mech, Vol. 202, pp. 127-134 (2009).
[9] Hwu, C., “Some explicit expression of extended Stroh formalism for two-dimensional piezoelectric anisotropic elasticity,” International Journal of Solids and Structures, Vol.45, pp. 4460-4473 (2008).
[10] Huang, J. H., Kuo, W. S. “The analysis of piezoelectric piezomagnetic composite materials containing ellipsoidal inclusions,” Journal of Applied Physics, Vol. 81(3), pp.1378-1386 (1997).
[11] Kuo, H.Y., Pan, E., ”Effective magnetoelectric effect in multicoated circular fibrous multiferroic composites,” Journal of Applied Physics, Vol. 109, 104901 (2011).
[12] Kuo, H.Y., Wang, Y. L., ”Optimization of magnetoelectricity in multiferroic fibrous composites,” Mechanics of Materials, Vol. 50, pp. 88-99 (2012).
[13] Lei, J., Zhang, C., ”On the generalized Barnett–Lothe tensors for anisotropic magnetoelectroelastic materials,” European Journal of Mechanics A/Solids, Vol. 46, pp.12-21 (2014).
[14] Li, P., Jin, F., Qian, Z., ”Propagation of the Bleustein–Gulyaev waves in a functionally graded transversely isotropic electro-magneto-elastic half-space,” European Journal of Mechanics A/Solids, Vol. 37, pp. 17-23 (2013).
[15] Li, Li., Wei, P. J., “The-piezoelectric and piezomagnetic effect on the surface wave velocity of magneto-electro-elastic solids,” Journal of Sound and Vibration, Vol. 333, pp. 2312-2326 (2014).
[16] Liu, J. X.,Fang, D. N.,Wei, W. Y.,Zhao, X. F., “Love wave in layered piezoelectric piezomagnetic structures,” Journal of Sound and Vibration, Vol. 315, pp.146-156 (2008).
[17] Norris, A. N., “One-component surface waves in materials with symmetry,” J. Mech. Phys. Solids, Vol. 40, No. 7, pp. 1569-1582 (1992).
[18] Pan, E., Heyliger, P. R., “Free vibrations of simply supported and multilayered magneto-electro-elastic plates” Journal of Sound and Vibration, Vol. 252, pp. 429-442 (2002).
[19] Rayleigh, L., “On Waves Propagated along Plane Surface of an Elastic Solid,” London Mathematical Society,” Vol. 17, No. 3, pp. 4-11 (1885).
[20] Suchtelen, J. V. “Product Properties :A New Application of Composite Materials,” Philips Research Reports,” Vol. 27, No. 1, pp.28-37 (1972).
[21] Soh, A. K., Liu, J. X., “On the Constitutive Equation of Magnetoelectroelastic Solids,” Journal of Intelligent Material Systems and Structures, Vol. 16, 597-602 (2005).
[22] Soh, A. K.,Liu, J. X., “Interfacial shear horizontal waves in a piezoelectric-piezomagnetic bi-material,” Philosophical Magazine Letters, Vol. 86, pp. 31-35 (2006).
[23] Ting, T. C. T., “Anisotropic Elasticity: Theory and Applications,” Oxford University press (1996).
[24] Ting, T. C. T., “The motion of one-component surface waves,” J. Mech. Phys. Solids, Vol. 40, No. 7, pp. 1637-1650 (1992).
[25] Ting, T. C. T., Barnett, D.M., “Classifications of surface waves in anisotropic elastic materials, “Wave motion, Vol. 26, pp. 207-218 (1997).
[26] Ting, T. C. T., “Existence of one-component Rayleigh waves, Stoneley waves, Love waves, Slip waves and one-component waves in a plate or layered plate,” Journal of Mechanics of Materials and Structures, Vol. 4, No.4 (2009).
[27] Ting, T. C. T., “A new modified Lekhnitskii formalism à la Stroh for steady-state waves in anisotropic elastic materials,” Wave Motion, Vol. 32, pp. 125-140 (2000).
[28] Van Run, A. M. J. G., Terrell, D. R.,Scholing, J. H., “An in situ grown eutectic magnetoelectric composite material , Part 2:physcial properties,” Journal of Material Science, Vol. 9, pp. 1710-1714 (1974).
[29] Wang, L.,Gundersen, S. A., “Existence of one component surface waves in anisotropic elastic media,” Physica Scripta, Vol. 47, pp. 394-404 (1993).
[30] Wang, B. L., Mai Y. W. “Crack tip field in piezoelectric / piezomagnetic media,” Eur. J. Mech. A/Solids 22, pp. 591-602 (2003).
[31] White, R. M.,Voltmer, F. W., “Direct Piezoelectric Coupling to Surface Elastic Waves,” Applied Physics Letters, Vol 7, Issue 12, pp.314-316 (1965).
[32] Wu, X.,Shen, Y.,Sun, Q., “Lamb wave propagate in magnetoelectroelastic plates,” Applied Acoustics, Vol. 68, pp. 1224-1240 (2007).
[33] Xue, C. X.,Pan, E.,“On the longitudinal wave along a functionally graded magneto-electro-elastic rod,” International Journal of Engineering Science, Vol. 62, pp. 48-55 (2013).
[34] Zhang, R.,Pan, Y.,Feng, W. J., “Propagation of Rayleigh Waves in a Magneto-Electro-Elastic Half-Space with Initial stress,” Mechanics of Advanced Materials and Structures, Vol. 21, pp. 538-543 (2014).
[35] 劉鈞耀,宋見春,“線彈性體Lekhnitskii法與Stroh法的對等性, ”行政院國家科學委員會專題研究計畫成果報告 (2008).