| 研究生: |
張琮珣 Chang, Tsung-hsun |
|---|---|
| 論文名稱: |
以螯合性高分子模板製備硫化鋅奈米結構材料之研究 Preparation of Zinc Sulfide Nanostructures by Using Chelating Polymer Templates |
| 指導教授: |
黃耀輝
Huang, Yao-hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 硫化鋅 、螯合性高分子 、II-VI族半導體材料 |
| 外文關鍵詞: | II-VI semiconductor, chelating polymer templates, zinc sulfide |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以螯合性高分子模板作為製備硫化鋅奈米微粒的成長基板,其高分子模板係利用無乳化劑乳化共聚合法(emulsion-free polymerization)合成乳液後,再將其成膜而得到高分子薄膜基板。其特徵在於高分子基板表面具有強螯合金屬離子的官能基,在高分子基板螯合金屬離子後,可用二次水清洗多餘未螯合之金屬離子,並利用液相或氣相還原法製備硫化鋅奈米結構於高分子基材上。
本研究以縮水甘油甲基丙烯酸酯(GMA)和亞胺乙二酸(IDA)反應得到側鏈具螯合官能基的乙烯系單體,簡稱為GMA-IDA,並使之與丙烯酸正丁酯(BA)及縮水甘油甲基丙烯酸酯(GMA)進行無乳化劑乳化共聚合反應製備得到Poly(BA-co-GMA-co-GMA-IDA) (PBGG-I)高分子乳液,再將乳液成膜製得高分子PBGG-I薄膜基板。PBGG-I薄膜螯合Zn2+離子後,以二次水清洗薄膜上未螯合金屬離子,分別以液相法(Na2S)及氣相法(H2S)製備得到PBGG-I-ZnS奈米複合薄膜材料。探討不同螯合基含量和不同還原方法對於硫化鋅奈米結構的影響。利用SEM可觀察到液相法可製備出不同長度的硫化鋅奈米棒或成束狀的奈米棒;氣相法則可以得到硫化新的奈米粒或奈米棒。
A simple synthetic route for preparation of luminescent and magnetic nanocomposite materials is disclosed. This method comprises providing chelating group-containing polymer templates, and producing nanoparticles on the surface of said polymer template. Various kinds of nanoparticles can be synthesized on polymer templates with electroless plating, ultraviolet irradiation, gas phase and liquid phase chemical precipitation methods. This approach is suitable not only for the preparation of semiconductor nanoparticles but also other nanoparticles, especially those that can be prepared from the reduction of an appropriate metal ion-polymer complex.
In this study, ZnS nanostructures were prepared by using poly(BA-co- GMA-co-GMA-IDA) (PBGG-I) copolymer membranes as template. PBGG-I membranes were synthesized by soap-free emulsion copolymerization of n-butylacrylate (BA), glycidyl methacrylate (GMA) and 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA). GMA-IDA chelating groups within the copolymer were the coordination sites for chelating Zn2+, at which nanosized ZnS nanocrystals were grown by the wet method (Na2S) and the dry method (H2S). The morphology of ZnS nanocrystals were observed by SEM. By the wet method, ZnS nanorods or nanorod-bundles were prepared. On the other hand, ZnS nanoparticles or nanorods were observed by using the dry method.
1. L. Wang, L. Chen, T. Luo, Y. Qian, Materials Letters, 60, 3627, 2006
2. Y. Shi, J. Chen, P. Shen, J. Alloys and Compounds, 441, 337, 2007
3. S. Kar, S. Chaudhuri, J. Phys. Chem. B, 109, 3298, 2005
4. J. Hu, Y. Bando, J. Zhan, D. Golberg, Adv. Funct. Mater., 15, 757, 2005
5. W. Kong, et al., Materials Letters, 61, 5033, 2007
6. X.S. Fang, et al., Journal of Crystal Growth, 263, 263, 2004
7. S. Kar, S. Biswas, S. Chaudhuri, Nanotechnology, 16, 737, 2005
8. L. Wang, L. Chen, T. Luo, Y. Qian, Materials Letters, 60, 3627, 2006
9. Y. Shi, J. Chen, P. Shen, J. of Alloys and Compounds, 441, 337, 2007
10. P.X. Yan et al., Journal of Crystal Growth, 293, 428, 2006
11. S. Biswas, S. Kar, Nanotechnology, 19, 045710, 2008
12. Z. Li, et al., Nanotechnology, 18, 255602, 2007
13. G. Shen, Y. Bando, D. Golberg, Applied Physics Letter, 88, 123107, 2006
14. X. Xu, et al., Radiation Physics and Chemistry, 55, 353, 1999
15. Z. Zhang, et al., Radiation Physics and Chemistry, 61, 61, 2001
16. S. Shingubara, et al., Jpn. J. Appl. Phys., 36, 7791, 1997
17. H. Zhang, et al., Nanotechnology, 15, 945, 2004
18. X.C. Jiang, et al., Chem. Mater., 13, 1213, 2001
19. S. K. Mehta, et al., Nanoscale Res. Lett., 4, 17, 2009
20. M. Antonietti, C. Gltner, Angew. Chem. Int. Edn., 36 910,1997
21. M. Antonietti, F. Grhn, J. Hartmann,L. Bronstein, Angew. Chem. Int. Edn., 36, 2080, 1997
22. M. R. Bockstaller, Y. Lapetnikov, S. Margel, E.L. Thomas, J. Am. Chem. Soc., 125, 5276, 2003
23. D.S. Eli, S.I. Stupp, J. Am. Chem. Soc., 126, 12756, 2004
24. M. Artemyev, et al., J. Am. Chem. Soc., 126, 10594, 2004
25. H.Y. Zhao, E.P. Douglas, B.S. Harrison, K.S. Schanze, Langmuir, 17, 8428, 2001
26. V. Bekiari, D. Pagonis, G. Bokias, P. Lianos, Langmuir, 20, 7972, 2004
27. S.V. Yeh, K.H. Wei, Y.S. Sun, U.S. Jeng, K.S. Liang, Macromolecules, 36, 7903, 2003
28. X.C. Wu, A.M. Bittner, K. Kern, J. Phys. Chem. B, 109, 230, 2005
29. J. Kong, Science, 287, 622, 2000
30. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science, 295, 2425, 2002
31. J. Hu, L.S. Li, W. Yang, L. Manna, L.W. Wang, A.P. Alivisatos, Science, 292, 2060, 2001
32. L.S. Li, J. Walda, L. Manna, A.P. Alivisatos, Nano Lett., 2, 557, 2002
33. M.S. Gudiksen, L.J. Lauhon, D. Smith, C.M. Lieber, Nature, 415, 617, 2002
34. M.G. Bawendi, M.L. Steigerwald, L.E. Brus, Annu. Rev. Phys. Chem., 41, 477, 1990
35. F. Seker, K. Meeker, T.F. Kuech, A.B. Ellis, Chem. Rev., 100, 2505, 2000
36. I. Willner, F. Ptolsky, J. Wasserman, Angew. Chem. Int. Edn, 40, 1861, 2001
37. S.H. Yu, M. Yoshimura, Adv. Mater., 14, 296, 2002
38. S.H. Yu, J. Yang, Y.T. Qian, M. Yoshimura, Chemical Physics Letters, 361, 362, 2002
39. J. Li, Y. Xu, W. Wei, D. Wu, Y. Sun, Colloids and Surfaces A: Physicochem. Eng. Aspects, 287, 222, 2006
40. W.T Yao, S.H. Yu, Q.S. Wu, Adv. Funct. Mater., 17, 623, 2007
41. R. Maity, U.N. Maiti, M.K. Mitra, K.K. Chattopadhyay, Physica E, 33, 104, 2006
42. M.L. Hassan, A.F. Ali, J. Crystal Growth, 310, 5252, 2008
43. I. Chakraborty, S.P. Moulik, J. Dispersion Science and Technology, 25, 849, 2004
44. M. Zhang, M. Drechsler, A.H.E. Muller, Chem. Mater., 16, 537, 2004
45. H.P. Soni, D. Parmar, N. Patel, M. Chawda, D. Bodas, Materials Letters, 62, 2700, 2008
46. Z. Zhao1, F. Geng1, H. Cong1, J. Bai, Nanotechnology, 17, 4731, 2006
47. Y. Zhao, T. Chen, J. Zou, W. Shi, J. Crystal Growth, 275, 521, 2005
48. W. Nie, J. Zhu, et al., Nanotechnology,17, 3313, 2006
49. F. Ciardelli, E. Tsuchida, D. Wohrle, “Macromolecule-Metal Complexes”, Berlin Springer, 1996
50. S.H. Choi, Y.C. Nho, Radiation Phys. Chem., 57, 187, 2000
51. S. Forster, M. Antonietti, Adv. Mater., 10, 195, 1998
52. Y.H. Cho, J.E. Yang, J.S. Lee, Mater. Sci. Eng. C, 24, 293, 2004
53. C.C. Wang, C.C. Chang, C.Y. Chen, Macromol. Chem. Phys., 202, 882, 2001
54. C.C. Wang, C.Y. Chen, J. Appl. Polym. Sci., 84, 1353, 2002
55. C. C. Wang, C. Y. Chen, C. C. Huang, C. Y. Chen, J. Membr. Sci., 208, 133, 2002
56. C.C. Wang, W.S. Li, C.Y. Cheng, C.Y. Chen, J. Appl. Polym. Sci., 82, 3248, 2001
57. C.C. Wang, H.G. Chen, H.B. Hsieh, C.Y. Chen, Polym. Adv. Technol., 14, 349, 2003
58. W.H. Hou, C.Y. Chen, C.C. Wang, Polymer, 44, 2983, 2003
59. W.H. Hou, C.Y. Chen, C. . Wang, Y.H. Huang, Electrochim. Acta, 48, 679, 2003
60. W.H. Hou, C.Y. Chen, C.C. Wang, Conductivity , Solid State Ion., 166, 397, 2004
61. W.H. Hou, C.Y. Chen, C.C. Wang, Electrochim. Acta, 49, 2105, 2004
62. P. Buffat, J.P. Borel, Phys. Rev., A13, 2287, 1976
63. Y.W. Du, J. Appl. Phys., 63, 4100, 1988
64. C.M. Mo, Z. Yuan, L.D. Zhang, Nanostructured Mater., 2, 113, 1993
65. P. Ball, L. Garwin, Nature, 355, 761, 1992
66. H. Yoneyama, Crit. Rev. Solid State Mater. Sci., 18, 69, 1993
67. D.W. Bahneman, J. Phys. Chem., 98, 1025, 1994
68. Z.X. Deng, L. Li, Y. Li, Inorg. Chem., 42, 2331, 2003
69. P. O’Brien, N.L. Pickett, Chem. Mater., 13, 3843,2001
70. I.P. McClean, C.B. Thomas, Semicond. Sci. Technol., 7, 1394, 1992
71. C. L, J. Gao et al., Adv. Funct. Mater., 18, 3070, 2008
72. G. Shen, Y. Bando, D. Golberg, Appl. Phys. Lett., 88, 123107, 2006
73. Y.C. Chu, C.C. Wang, C.Y. Chen, Nanotechnology, 16, 58, 2005
74. Y.C. Chu, C.C. Wang, C.Y. Chen, J. Membr. Sci., 247, 201, 2005
75. 陳志彥, 具側鏈亞胺乙二酸高分子與金屬離子之螯合性質的探討及應用, 國立成功大學博士論文, 民國九十一學年度
76. 朱遠志, 以螯合功能性高分子模板製備奈米微粒之研究, 國立成功大學博士論文, 民國九十三學年度
77. 丁志帆, 螯合性高分子乳液之合成及其應用, 國立成功大學碩士論文, 民國九十二學年度
78. 曾俊豪, 探討銀奈米粒子於改質之聚丙烯纖維表面形成機制, 國立成功大學碩士論文, 民國九十三學年度
校內:2109-08-25公開