簡易檢索 / 詳目顯示

研究生: 張琮珣
Chang, Tsung-hsun
論文名稱: 以螯合性高分子模板製備硫化鋅奈米結構材料之研究
Preparation of Zinc Sulfide Nanostructures by Using Chelating Polymer Templates
指導教授: 黃耀輝
Huang, Yao-hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 硫化鋅螯合性高分子II-VI族半導體材料
外文關鍵詞: II-VI semiconductor, chelating polymer templates, zinc sulfide
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以螯合性高分子模板作為製備硫化鋅奈米微粒的成長基板,其高分子模板係利用無乳化劑乳化共聚合法(emulsion-free polymerization)合成乳液後,再將其成膜而得到高分子薄膜基板。其特徵在於高分子基板表面具有強螯合金屬離子的官能基,在高分子基板螯合金屬離子後,可用二次水清洗多餘未螯合之金屬離子,並利用液相或氣相還原法製備硫化鋅奈米結構於高分子基材上。
      本研究以縮水甘油甲基丙烯酸酯(GMA)和亞胺乙二酸(IDA)反應得到側鏈具螯合官能基的乙烯系單體,簡稱為GMA-IDA,並使之與丙烯酸正丁酯(BA)及縮水甘油甲基丙烯酸酯(GMA)進行無乳化劑乳化共聚合反應製備得到Poly(BA-co-GMA-co-GMA-IDA) (PBGG-I)高分子乳液,再將乳液成膜製得高分子PBGG-I薄膜基板。PBGG-I薄膜螯合Zn2+離子後,以二次水清洗薄膜上未螯合金屬離子,分別以液相法(Na2S)及氣相法(H2S)製備得到PBGG-I-ZnS奈米複合薄膜材料。探討不同螯合基含量和不同還原方法對於硫化鋅奈米結構的影響。利用SEM可觀察到液相法可製備出不同長度的硫化鋅奈米棒或成束狀的奈米棒;氣相法則可以得到硫化新的奈米粒或奈米棒。

    A simple synthetic route for preparation of luminescent and magnetic nanocomposite materials is disclosed. This method comprises providing chelating group-containing polymer templates, and producing nanoparticles on the surface of said polymer template. Various kinds of nanoparticles can be synthesized on polymer templates with electroless plating, ultraviolet irradiation, gas phase and liquid phase chemical precipitation methods. This approach is suitable not only for the preparation of semiconductor nanoparticles but also other nanoparticles, especially those that can be prepared from the reduction of an appropriate metal ion-polymer complex.
    In this study, ZnS nanostructures were prepared by using poly(BA-co- GMA-co-GMA-IDA) (PBGG-I) copolymer membranes as template. PBGG-I membranes were synthesized by soap-free emulsion copolymerization of n-butylacrylate (BA), glycidyl methacrylate (GMA) and 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA). GMA-IDA chelating groups within the copolymer were the coordination sites for chelating Zn2+, at which nanosized ZnS nanocrystals were grown by the wet method (Na2S) and the dry method (H2S). The morphology of ZnS nanocrystals were observed by SEM. By the wet method, ZnS nanorods or nanorod-bundles were prepared. On the other hand, ZnS nanoparticles or nanorods were observed by using the dry method.

    中文摘要 --------------------------------------------- I 英文摘要 --------------------------------------------- II 致謝 --------------------------------------------- III 目 錄 --------------------------------------------- IV 表目錄 --------------------------------------------- VI 圖目錄 --------------------------------------------- VII 第一章 緒 論---------------------------------------- 1 第二章 文獻回顧------------------------------------- 5 2-1 硫化鋅奈米材料的應用與製備------------------- 5 2-1-1以硬模板製備硫化鋅奈米材料的技術-------- 5 2-1-2以軟模板製備硫化鋅奈米材料的技術-------- 6 2-1-3以高分子模板製備零維硫化鋅奈米材料------ 7 2-1-4以高分子模板製備一維硫化鋅奈米材料------ 8 2-1-5以高分子模板製備二維硫化鋅奈米材料------ 9 2-2 螯合性高分子模板的製備方法------------------- 10 2-3 奈米材料的特殊性質--------------------------- 13 2-4 研究動機------------------------------------- 16 第三章 實驗部分------------------------------------- 18 3-1 藥 品 --------------------------------------- 18 3-2 儀器設備------------------------------------- 18 3-3 實驗步驟------------------------------------- 19 3-3-1 GMA-IDA單體的合成---------------------- 19 3-3-2高分子薄膜基板製備---------------------- 20 3-3-3奈米粒子製備---------------------------- 21 3-4 分析方法------------------------------------- 22 3-4-1高分子基材之成分分析-------------------- 22 3-4-2高分子奈米複合材料性質分析-------------- 22 第四章 結果與討論----------------------------------- 23 4-1 製備PBGG-I基板------------------------------- 23 4-1-1 PBGG-I的EA鑑定------------------------- 23 4-1-2 PBGG-I的ATR-FTIR鑑定------------------- 23 4-1-3 PBGG-I的DSC鑑定------------------------ 24 4-1-4 PBGG-I薄膜螯合吸附曲線----------------- 25 4-1-5 PBGG-I薄膜之SEM鑑定-------------------- 25 4-2 PBGG-I-ZnS奈米複合薄膜----------------------- 26 4-2-1液相法製備ZnS奈米結構------------------- 26 4-2-1-1 不同GMA-IDA含量之高分子薄膜的比較-- 26 4-2-1-2 不同濃度之Na2S水溶液還原的比較----- 27 4-2-2氣相法製備ZnS奈米粒子------------------- 29 第五章 結論----------------------------------------- 31 第六章 參考文獻------------------------------------- 32 自 述 --------------------------------------------- 58

    1. L. Wang, L. Chen, T. Luo, Y. Qian, Materials Letters, 60, 3627, 2006
    2. Y. Shi, J. Chen, P. Shen, J. Alloys and Compounds, 441, 337, 2007
    3. S. Kar, S. Chaudhuri, J. Phys. Chem. B, 109, 3298, 2005
    4. J. Hu, Y. Bando, J. Zhan, D. Golberg, Adv. Funct. Mater., 15, 757, 2005
    5. W. Kong, et al., Materials Letters, 61, 5033, 2007
    6. X.S. Fang, et al., Journal of Crystal Growth, 263, 263, 2004
    7. S. Kar, S. Biswas, S. Chaudhuri, Nanotechnology, 16, 737, 2005
    8. L. Wang, L. Chen, T. Luo, Y. Qian, Materials Letters, 60, 3627, 2006
    9. Y. Shi, J. Chen, P. Shen, J. of Alloys and Compounds, 441, 337, 2007
    10. P.X. Yan et al., Journal of Crystal Growth, 293, 428, 2006
    11. S. Biswas, S. Kar, Nanotechnology, 19, 045710, 2008
    12. Z. Li, et al., Nanotechnology, 18, 255602, 2007
    13. G. Shen, Y. Bando, D. Golberg, Applied Physics Letter, 88, 123107, 2006
    14. X. Xu, et al., Radiation Physics and Chemistry, 55, 353, 1999
    15. Z. Zhang, et al., Radiation Physics and Chemistry, 61, 61, 2001
    16. S. Shingubara, et al., Jpn. J. Appl. Phys., 36, 7791, 1997
    17. H. Zhang, et al., Nanotechnology, 15, 945, 2004
    18. X.C. Jiang, et al., Chem. Mater., 13, 1213, 2001
    19. S. K. Mehta, et al., Nanoscale Res. Lett., 4, 17, 2009
    20. M. Antonietti, C. Gltner, Angew. Chem. Int. Edn., 36 910,1997
    21. M. Antonietti, F. Grhn, J. Hartmann,L. Bronstein, Angew. Chem. Int. Edn., 36, 2080, 1997
    22. M. R. Bockstaller, Y. Lapetnikov, S. Margel, E.L. Thomas, J. Am. Chem. Soc., 125, 5276, 2003
    23. D.S. Eli, S.I. Stupp, J. Am. Chem. Soc., 126, 12756, 2004
    24. M. Artemyev, et al., J. Am. Chem. Soc., 126, 10594, 2004
    25. H.Y. Zhao, E.P. Douglas, B.S. Harrison, K.S. Schanze, Langmuir, 17, 8428, 2001
    26. V. Bekiari, D. Pagonis, G. Bokias, P. Lianos, Langmuir, 20, 7972, 2004
    27. S.V. Yeh, K.H. Wei, Y.S. Sun, U.S. Jeng, K.S. Liang, Macromolecules, 36, 7903, 2003
    28. X.C. Wu, A.M. Bittner, K. Kern, J. Phys. Chem. B, 109, 230, 2005
    29. J. Kong, Science, 287, 622, 2000
    30. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science, 295, 2425, 2002
    31. J. Hu, L.S. Li, W. Yang, L. Manna, L.W. Wang, A.P. Alivisatos, Science, 292, 2060, 2001
    32. L.S. Li, J. Walda, L. Manna, A.P. Alivisatos, Nano Lett., 2, 557, 2002
    33. M.S. Gudiksen, L.J. Lauhon, D. Smith, C.M. Lieber, Nature, 415, 617, 2002
    34. M.G. Bawendi, M.L. Steigerwald, L.E. Brus, Annu. Rev. Phys. Chem., 41, 477, 1990
    35. F. Seker, K. Meeker, T.F. Kuech, A.B. Ellis, Chem. Rev., 100, 2505, 2000
    36. I. Willner, F. Ptolsky, J. Wasserman, Angew. Chem. Int. Edn, 40, 1861, 2001
    37. S.H. Yu, M. Yoshimura, Adv. Mater., 14, 296, 2002
    38. S.H. Yu, J. Yang, Y.T. Qian, M. Yoshimura, Chemical Physics Letters, 361, 362, 2002
    39. J. Li, Y. Xu, W. Wei, D. Wu, Y. Sun, Colloids and Surfaces A: Physicochem. Eng. Aspects, 287, 222, 2006
    40. W.T Yao, S.H. Yu, Q.S. Wu, Adv. Funct. Mater., 17, 623, 2007
    41. R. Maity, U.N. Maiti, M.K. Mitra, K.K. Chattopadhyay, Physica E, 33, 104, 2006
    42. M.L. Hassan, A.F. Ali, J. Crystal Growth, 310, 5252, 2008
    43. I. Chakraborty, S.P. Moulik, J. Dispersion Science and Technology, 25, 849, 2004
    44. M. Zhang, M. Drechsler, A.H.E. Muller, Chem. Mater., 16, 537, 2004
    45. H.P. Soni, D. Parmar, N. Patel, M. Chawda, D. Bodas, Materials Letters, 62, 2700, 2008
    46. Z. Zhao1, F. Geng1, H. Cong1, J. Bai, Nanotechnology, 17, 4731, 2006
    47. Y. Zhao, T. Chen, J. Zou, W. Shi, J. Crystal Growth, 275, 521, 2005
    48. W. Nie, J. Zhu, et al., Nanotechnology,17, 3313, 2006
    49. F. Ciardelli, E. Tsuchida, D. Wohrle, “Macromolecule-Metal Complexes”, Berlin Springer, 1996
    50. S.H. Choi, Y.C. Nho, Radiation Phys. Chem., 57, 187, 2000
    51. S. Forster, M. Antonietti, Adv. Mater., 10, 195, 1998
    52. Y.H. Cho, J.E. Yang, J.S. Lee, Mater. Sci. Eng. C, 24, 293, 2004
    53. C.C. Wang, C.C. Chang, C.Y. Chen, Macromol. Chem. Phys., 202, 882, 2001
    54. C.C. Wang, C.Y. Chen, J. Appl. Polym. Sci., 84, 1353, 2002
    55. C. C. Wang, C. Y. Chen, C. C. Huang, C. Y. Chen, J. Membr. Sci., 208, 133, 2002
    56. C.C. Wang, W.S. Li, C.Y. Cheng, C.Y. Chen, J. Appl. Polym. Sci., 82, 3248, 2001
    57. C.C. Wang, H.G. Chen, H.B. Hsieh, C.Y. Chen, Polym. Adv. Technol., 14, 349, 2003
    58. W.H. Hou, C.Y. Chen, C.C. Wang, Polymer, 44, 2983, 2003
    59. W.H. Hou, C.Y. Chen, C. . Wang, Y.H. Huang, Electrochim. Acta, 48, 679, 2003
    60. W.H. Hou, C.Y. Chen, C.C. Wang, Conductivity , Solid State Ion., 166, 397, 2004
    61. W.H. Hou, C.Y. Chen, C.C. Wang, Electrochim. Acta, 49, 2105, 2004
    62. P. Buffat, J.P. Borel, Phys. Rev., A13, 2287, 1976
    63. Y.W. Du, J. Appl. Phys., 63, 4100, 1988
    64. C.M. Mo, Z. Yuan, L.D. Zhang, Nanostructured Mater., 2, 113, 1993
    65. P. Ball, L. Garwin, Nature, 355, 761, 1992
    66. H. Yoneyama, Crit. Rev. Solid State Mater. Sci., 18, 69, 1993
    67. D.W. Bahneman, J. Phys. Chem., 98, 1025, 1994
    68. Z.X. Deng, L. Li, Y. Li, Inorg. Chem., 42, 2331, 2003
    69. P. O’Brien, N.L. Pickett, Chem. Mater., 13, 3843,2001
    70. I.P. McClean, C.B. Thomas, Semicond. Sci. Technol., 7, 1394, 1992
    71. C. L, J. Gao et al., Adv. Funct. Mater., 18, 3070, 2008
    72. G. Shen, Y. Bando, D. Golberg, Appl. Phys. Lett., 88, 123107, 2006
    73. Y.C. Chu, C.C. Wang, C.Y. Chen, Nanotechnology, 16, 58, 2005
    74. Y.C. Chu, C.C. Wang, C.Y. Chen, J. Membr. Sci., 247, 201, 2005
    75. 陳志彥, 具側鏈亞胺乙二酸高分子與金屬離子之螯合性質的探討及應用, 國立成功大學博士論文, 民國九十一學年度
    76. 朱遠志, 以螯合功能性高分子模板製備奈米微粒之研究, 國立成功大學博士論文, 民國九十三學年度
    77. 丁志帆, 螯合性高分子乳液之合成及其應用, 國立成功大學碩士論文, 民國九十二學年度
    78. 曾俊豪, 探討銀奈米粒子於改質之聚丙烯纖維表面形成機制, 國立成功大學碩士論文, 民國九十三學年度

    無法下載圖示 校內:2109-08-25公開
    校外:2109-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE