| 研究生: |
崔廣宇 Tsui, Kuang-Yu |
|---|---|
| 論文名稱: |
藉由仿生浸泡法在體外鍍製氫氧基磷灰石趨勢之探討 Trend Analysis for HA Coating in vitro by Biomimetic Immersion |
| 指導教授: |
李澤民
Lee, Tse-Min 王清正 Wang, Ching-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 掃描式探針顯微鏡 、浸泡溶液 、氧化鈦結構 、浸泡溫度 、仿生浸泡沉積法 |
| 外文關鍵詞: | structures of TiO2, biomimetic immersion, SPM, soaking temperature, immersing solutions |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選取影響仿生浸泡沉積法(biomimetic immersion)的因子進行重要性評估,分別為浸泡溫度、表面氧化鈦結構以及浸泡之溶液。選取10℃、37℃、80℃為本實驗之浸泡溫度;以體積濃度34%硝酸處理(HP)和高溫爐處理(HT)分別提供試片表面anatase、rutile混合結構和單純rutile結構的氧化鈦;以及選取模擬人體體液(simulated body fluid , SBF)和過飽和鈣溶液(supersaturated calcification solution , SCS)作為浸泡的溶液表面性質部份利用掃描式探針顯微鏡量測浸泡溶液後試片的表面粗糙度及型態;利用化學分析電子術和能量散佈光譜儀來做試片表面的化學成份的定量及定性分析;利用高解析場發掃描式電子顯微鏡觀察試片表面型態;利用多功能X光薄膜繞射儀分析試片表面的結晶型態,並將找出來的最佳條件,利用MMT、ALP、以及細胞表面型態來評估生物相容性。從SPM的結果發現浸泡溫度與試片表面粗糙度呈現正相關,當浸泡溫度越高時表面粗糙度越高;從FE-SEM表面型態也發現到浸泡溫度越高鈣磷化合物覆蓋面積也越大且由ESCA分析出的鈣磷含量也是隨浸泡溫度升高而增加;從浸泡後的表面粗糙度也發現經過硝酸表面鈍化所得的氧化鈦結構—anatase與rutile混合結構擁有較高的粗糙度。透過本實驗結果將浸泡溫度、試片表面氧化鈦結構以及浸泡溶液之重要性做評估,提供一個簡單且控制容易的仿生浸泡沉積法之最佳浸泡條件,且由生物相容性測試中可以發現,利用最佳浸泡條件的鍍層,對骨母細胞擁有良好的黏附及分化能力。
This study aims at investigating the optimal condition for HA coating in vitro by biomimetic immersion. In order to study the importance of the factors for deposited calcium phosphate apatite, it selected soaking temperature, immersing solutions, and the surface structure of Titanium dioxide, individually. The surface treatments of Ti6Al4V samples was carried out by passivating with heated in 400°C air (HT) and immersing in volume 34% nitric acid (HP) first .Then immersed them in simulated body fluid (SBF) or supersaturated calcification solution (SCS) at 10°C, 37°C or 80°C. The surface roughness and morphology is measured by Scanning Probe Microscope (SPM); the chemical property of surface deposition is analyzed by Electron Spectroscopy for Chemical Analysis (ESCA) and Energy Dispersive Spectrometer (EDS); the crystal of surface deposition is observed by Multipurpose X-Ray Thin-Film Diffractometer (TF-XRD); images of the calcium phosphate is taken by High Resolution Field-Emission Scanning Electron Microscopy (FE-SEM). Estimated the biocompatibility of the optinal immersed condition by using
MTT, alkaline phosphatase(ALP) ,and FE-SEM to observed the morphology of osteoblast
By using SPM and FE-SEM, it has been observed that increasing the soaking temperature would raise the surface roughness and the covered area of apatite. With ESCA analyzing, immersed at higher soaking temperature would increase the production of calcium phosphate apatite. In addition, the structure mixed by anatase and rutile had higher roughness than the pure structure of rutile. This study weighed the importance of factors and provided a simple and easily controllable optimal condition for biomimetic immersion.
[1] T. M. Lee, E. Chang, and C.Y. Yang, “Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy,” Biomaterials, Vol. 25, pp. 23-32, 2004.
[2] K. D. Groot, J. G. C. Wolke, and J. A. Jansen, “Calcium phosphate coatings for medical implants,” Proc Instn Mech Engrs, Vol. 212, pp. 137-149, 1998.
[3] S. Limin, C. B. Christopher, A. G. Karlis, and K. Ahmet, “Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review,” J Biomed Mater Res, Vol. 58, pp. 570-592, 2001.
[4] Y. Yang, K. H. Kim, and J. L. Ong, “A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying,” Biomaterials, Vol. 26, pp. 327-37, 2005.
[5] E. Leitao, M. A. Barbosa, and K. D. Groot, “In vitro calcification of orthopaedic implant materials,” J. Mater. Sci Mater. in Medicine,Vol. 6, pp. 849-852, 1995.
[6] H. B. Wen, J. R. D. Wijn, C. A. V. Blitterswijk, and K. D. Groot, “Incorporation of bovine serum albumin in calcium phosphate coating on titanium,” J Biomed Mater Res, Vol. 46, pp. 245-252, 1999.
[7] A. A. Campbell, G. E. Fryxell , J. C. Linehan, and G. L. Graff, “Surface-induced mineralization: A new method for producing calcium phosphate coatings,” J. Biomed.Mater. Res, Vol. 32, pp. 111–118, 1996.
[8] W. L. Jaffe, and D. F. Scott, “Total hip arthroplasty with hydroxyapatite-coated prostheses. J Bone Joint Surg,” Vol. 78A, pp. 1918–1934, 1996.
[9] M. Sato, E. B. Slamovich, and T. J. Webster, “Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide)sol–gel titanium coatings,” Biomaterials, Vol. 26, pp. 1349-1357, 2005.
[10] F. H. Lin, Y. S. Hsu, S. H. Lin, and T. M. Chen, “The growth of hydroxyapatite on alkaline treated Ti–6Al–4V soaking in higher temperature with concentrated Ca2+/HPO4 2− simulated body fluid,” Mater Chem. Phys, Vol. 87, pp.24-30, 2004.
[11] F. Li, Q. L. Feng, F. Z. Cui, and H. D. Li, “Schubert H. A simple biomimetic method for calcium phosphate coating,” Surface and Coatings Technology, Vol. 154, pp.88-93, 2005
[12] B. Florence, M. E. S. Margot, A. Clemens, V. Blitterswijk, D. G. Klaas, and L. Pierre, “Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants,” Biomaterials, Vol.25, pp. 2901-2910, 2004.
[13] J. M. Wu, H. Satoshi, T. Kanji, and O. Akiyoshi, “In vitro bioactivity of anatase film obtained by direct deposition from aqueous titanium tetrafluoride solutions,” Thin Solid Films, Vol. 414,pp. 275-280, 2002.
[14] R. Rohanizadeh, M. Al-Sadeq, and R. Z. LeGeros, “Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition,” J Biomed Mater Res, Vol. 71, pp. 343–352, 2004.
[15] M. Uchida, H. M. Kim, T. Kokubo, S. Fujibayashi, and T. Nakamura, “Structural dependence of apatite formation on titania gels in a simulated body fluid,” J Biomed Mater Res, Vol. 64A, pp. 164–170, 2003.
[16] T. M. Lee and E. Chang, “Surface characteristics of Ti6Al4V alloy: effect of materials, passivation and autoclaving,” Journal of material science: materials in medicine, Vol. 9, pp. 439-448, 1998.
[17] T. M. Lee and E. Chang, “Effect of passivation on the dissolution behavior of Ti6Al4V and vacuum-brazed Ti6Al4V in Hank’s solution Part I Ion release,” Journal of material science: materials in medicine, Vol. 10, pp. 541-548, 1999.
[18] T. M. Lee and E. Chang, “Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank’s ethylene diamine tetra-acetic acid solution,” Biomaterials, Vol. 23, pp. 2917-2925, 2002.
[19] H. B. Wen, J. R. D. Wijn, F. Z. Cui, and K. D. Groo, “Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry,” J Biomed Mater Res, Vol.41, pp. 227-236, 1998.
[20] Y. Abe, T. Kokubo, and T. Yamamuro, “Apatite coating on ceramics, metals and polymers utilizing a biological process,” J. Mater. Sci. Mater. Med, Vol. 1, pp. 233-238, 1990.
[21] I. B. Leonor, A. Ito, K. Onuma, N. Kanzaki, Z. P. Zhong, D. Greenspan, and R. L. Reis, “In situ study of partially crystallized Bioglass and hydroxylapatite in vitro bioactivity using atomic force microscopy,” J Biomed Mater Res, Vol. 62, pp. 82–88,2002.
[22] A. E. Porter, L.W. Hobbs, V.B. Rosen, and M. Spector, “The ultrastructure of the plasma-sprayed hydroxyapatie–bone interface predisposing.” Biomaterials, Vol. 23, pp. 725–733, 2002.
[23] Y. Chang, D. Lew, J. B. Park, and J.C. Keller, “Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity.” J Oral Maxillofac Surg, Vol. 57, pp 1096–1109, 1999.
[24] M. J. Coathup, P. Bates, P. Cool, P. S. Walker, N. Blumenthal, J. P. Cobb, and G.W. Blunn, “Osseo-mechanical induction of extra-cortical plates with reference to their surface properties and geometric designs.” Biomaterials, Vol. 20 pp. 793–800, 1999.
[25] K. Soballe, S. Overgaard, E. S. Hansen, M. Lind, and C. Bunger, “A review of ceramic coatings for implant fixation.” J Long-Term Eff Med Implt, Vol. 9, pp. 131–151, 1999.
[26] C.K. Chang, J.S. Wu, D. L. Mao, and C. X. Ding, “Mechanical and histological evaluations of hydroxyapatite-coated and noncoated Ti6Al4V implants in tibia bone.”J Biomed Mater Res, Vol. 56, pp. 17–23, 2001.
[27] P. F. Gonzalez, and M.. Santos, “On the Hydroxyl Ions in Apatites.” J. Solid State Chem, Vol. 22, pp. 193-199, 1977.
[28] C. B Mao, H. D. Li., F. H. Cui, C. L. Ma, and O. L. Feng, “Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization,” J Crystal Growth, Vol. 206, pp. 308-321, 1999.
[29] T. Kausga, H. Kondo, and M. Nogimi, “Apatite formation on TiO2 in simulated body fluid,” J Cryst Growth, Vol. 235, pp. 235-240, 2002.
[30] L. Jonasova, F. A. Mullar, A. Helebrant, J. Strnad, and P. Greil, “Biomimetic apatite formation on chemically treated titanium,” Biomaterials, Vol. 25, pp. 1187-1194, 2004.
[31] H. M. Kim, Y. Kim, S. J. Park, C. Rey, H. M. Lee, M. J. Glimcher, and J. S. Ko, “Thin film of low-crystalline calcium phosphate apatite formed at low temperature,” Biomaterials, Vol. 21, pp. 1129–1134, 2000.
[32] X. Lu, and Y. Leng, “Theoretical analysis of calcium phosphate precipitation in simulated body fluid,” Biomaterials, Vol. 26, pp. 1097-1108, 2005.
[33] W. Kibalczyc, J. Christoffersen, M. R. Christoffersen, A. Zielenkiewicz, and W. Zielenkiewicz, “ The effect of magnesium ions on the precipitation of calcium phosphates.” J Cryst Growth, Vol. 106, pp. 355-366, 1990.
[34] F. Barrere, C. A. V. Blitterswijk, K. D. Groot, and P. Layrolle, “Biomimetic calcium phosphate coatings on Ti6AI4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3-.” Bone, Vol. 25, pp. 107-111, 1999.
[35] F. Barrere, C. A. V. Blitterswijk, K. D. Groot, and P. Layrolle, “Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution.” Biomaterials. Vol. 23, pp. 1921-1930, 2002.
[36] F. Barrere, C. A. V. Blitterswijk, K. D. Groot, and P. Layrolle, “Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium.” Biomaterials. Vol. 23, pp. 2211-2220, 2002.
[37] Q. L. Feng, H. Wang, F. Z. Cui, and T. N. Kim, “Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment.” J Crystal Growth, Vol. 200, pp. 550-557, 1999.
[38] F. Li, Q. L. Feng, F. Z. Cui, H. D. Li, and H. Schubert,”A simple biomimetic method for calcium phosphate coating.” Surface and Coatings Technology, Vol. 154, pp. 88-93, 2005.
[39] A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, and T. Miyazaki, “Preparation and assessment of revised simulated body fluids.” J Biomed Mater Res, Vol. 65A, pp. 188-195, 2003.
[40] F. H. Lin, Y. S. Hsu, S. H. Lin, and J. S. Sun, “The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel.” Biomaterials, Vol. 23, pp. 4029–4038, 2002.
[41] Q. L. Feng, F. Z. Cui, H. Wang, T. N. Kim, and J. O. Kim, “Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment.” J Crystal Growth, Vol. 210, pp. 735-740, 2000.
[42] F. Barrere, M. M. E. Snel, C. A. V. Blitterswijk, and K. D. Groot, “Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants,” Biomaterials, Vol. 25, pp. 2901–2910, 2004.
[43] X. Lu, Y. Leng, X. Zhang, J. Xu, L. Qin, and C. W. Chan, “Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo,” Biomaterials, Vol. 26, pp. 1793-1801, 2005.
[44] M. Browne, and P. J. Gregson, “Surface modification of titanium alloy implants,”Biomaterials, Vol. 15, pp. 894-898, 1994.
[45] D. T. Cromer, and K. Herrington,”The Structure of Anatase and Rutile,” J Chem Phys,Vol. 47, pp. 4708, 1954.
[46] R. M. Wilson, J. C. Elliott, and S. E. P. Dowker, “Rietveld refinement of the crystallographic structure of human dental enamel apatites,” American Mineralogist,Vol.84, pp. 1406-1414, 1999.
[47] M. Uchida, H. M. Kim, T. Kokubo, S. Fujibayashi, and T. Nakamura, “Structural dependence of apatite formation on titania gels in a simulated body fluid,” J Biomed Mater Res, Vol. 64A, pp. 164–170, 2003.
[48] A. Bagno, and C. D. Bello, “Surface treatments and roughness properties of Ti-based biomaterirals,” J. Mater. Sci. Mater. Med, Vol. 15, pp. 935-949, 2004.
[49] H. B. Wen, Q. Lin, J. R. D. Wijn, and K. D. Groot, “Preparation of bioactive microporous titanium surface by a new two-step chemical treatment,” J. Mater. Sci. Mater. Med, Vol. 9, pp. 121-128, 1998.
[50] Q. L. Feng, H. Wang, F. Z. Cui, and T. N. Kim, “Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment,” J Crystal Growth, Vol. 200, pp. 550-557, 1999.
[51] L. H. Li, H. W. Kim, S. H. Lee, Y. M. Kong, and H. E. Kim, “ Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating,” J Biomed Mater Res, Vol. 73A, pp. 48-54, 2005.
[52] S. H. Lee, H. W. Kim, E. J. Lee, L. H. Li, and H. E. Kim, “ Hydroxyapatite-TiO2 Hybrid Coating on Ti Implants,” J Biomater Appl, Vol. 20, pp. 195-208, 2006.