簡易檢索 / 詳目顯示

研究生: 郭英助
Kuo, Ying-chu
論文名稱: 平面水池方向造波之數值模擬
Numerical Simulation of Directional Wave Generation
指導教授: 李兆芳
Lee, Jaw-fang
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 68
中文關鍵詞: 振盪波方向造波
外文關鍵詞: evanescent wave, directional wave generation
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在方向造波的問題研究上,鑒於實際造波機的造波板間為不連續運動邊界與理論解析之造波邊界為連續運動函數並不相符,因此本研究以邊界元素法(BEM)求解等水深平面水池中方向造波之問題。將問題的求解分成進行波與振盪波,進行波使用Helmholtz方程式基本解而振盪波使用Modified Helmholtz 方程式之基本解,在根據所使用基本解已經滿足各邊界條件,其中條件中包含造波板的不連續運動邊界條件,配合元素的概念聯立計算求解。在數值模式的驗證上,本研究以連續函數之造波邊界與理1論解析的結果於方向造波gain function比較結果良好。考慮造波板單元的寬度影響,本研究結果顯示隨造波板寬度變寬,數值計算結果與造波版為連續運動函數的理論解析產生差異。其中在短週期波中,造波板單元的寬度對振盪波的影響不大,以本研究的數值計算結果顯示在造波板單元的寬度小於0.5m時,數值計算與理論解析的結果顯示趨於一致。

    In past works on the directional wave generation, the discontinuous boundary caused by the wavemaker units was not consistence with the continuous boundary of analytic solution. Therefore, the Boundary Element Method had been utilized to solve the problem of directional wave generation in a plane wave basin. The solutions were considered as two parts, propagating wave and evanescent wave. The propagating wave was derived from fundamental solution of Helmholtz equation and the evanescent wave was derived from fundamental solution of Modified Helmholtz equation. Also, both fundamental solutions were satisfied all boundary conditions which included the discontinuous boundary condition of the wavemaker units. Then, we combined concepts mentioned above to solve multi-function problems. From the validation of numerical simulation, the results of the continuous boundary function are consistence with analytic solution theory on gain function. Besides, considering the effect from the width of wavemaker units, it reveals that the numerical simulation of continuous boundary has differences from analytic solution theory by increasing the width of boards. In short period case, it shows that there is no apparent effect to the evanescent wave by adjusting the width of board-units. The results also show that the numerical simulation is consistence with analytic solution theory while the width of board-units is less than 0.5m.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 符號說明 VIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究方法 4 1-4 本文組織 4 第二章 理論基礎 6 2-1問題之描述 6 2-2進行波 7 2-3振盪波 8 第三章 數值模式 11 3-1 邊界元素法 11 3-2 進行波之邊界積分式 11 3-3 振盪波之邊界積分式 11 3-4 求解矩陣式 12 3-4-1 進行波 12 3-4-2 振盪波 16 3-4-3 問題求解 21 3-5 求解內部點 23 3-6 求解水位變化 23 第四章 結果與討論 25 4-1 數值模式驗證 25 4-2 方向造波之計算與討論 31 4-2-1 長週期波 31 4-2-2 短週期波 37 4-3 長週期波與短週期波之結果比較 43 第五章 結論與建議 44 5-1 結論 44 5-2 建議 45 參考文獻 46 附錄A 48 附錄B 55 附錄C 58 自 述 68

    1. Brandini, C. and Grilli, S. (2001) , Modeling of Freak Wave Generation in a 3D-NWT, Proceedings of the International Offshore and Polar Engineering Conference, Vol. 3, pp. 124-131.
    2. Dean, R. G. and Dalrymple, R. A. (1984) , Water Wave Mechanics for Engineers and Scientists, Prentice-Hall Inc, Englewood Cliffs, New Jersey.
    3. Lee , J. J. (1969) ,Wave Induced Oscillations in Harbors of Arbitrary Shape , U. S. Army Corps of Engineers .
    4. Kim, M. H. and Celebi, M. S. Kim, D. J. (1998) , Fully Nonlinear Interactions of Waves with a Three-Dimensional Body in Uniform Currents, Applied Ocean Research, Vol. 20, pp. 309-321.
    5. Park, J. C., Uno, Y., Sato, T., Miyata, H. and Chun, H. H. (2004) , Numerical Reproduction of Fully Nonlinear Multi-Directional Waves by a Viscous 3D Numerical Wave Tank, Ocean Engineering, Vol. 31, pp. 1549-1565.
    6. Schäffer, H. A. and Steenberg, C. M. (2003) , Second-order wavemaker theory for multidirectional waves, Ocean Engineering, Vol. 30, pp.1203-1231.
    7. Sulisz, W. and Hudspeth, R. T. (1993a) , Complete Second-Order Solution for Water Waves Generated in Wave Flumes, J. Fluids and Structures, Vol. 7, pp. 253-268.
    8. Sulisz, W. and Hudspeth, R. T. (1993b) , Second-Order Wave Loads on Planar Wavemakers, J. Waterway, Port, Coastal and Ocean Engineering, Vol.119, pp. 521-536.
    9. Takayama, T. (1984) , Theory of Oblique Waves Generated by Serpent-Type Wave-Maker, Coastal Engineering in Japan, Vol. 27, pp.1-19.
    10. Wu, Y. C. and Dalrymple, R. A. (1987) , Analysis of Wave Fields Generated by a Directional Wavemaker, Ocean Engineering, Vol. 11, pp.241-261.
    11. 王豪偉、黃清哲和吳京 (2004),三維數值黏性波浪水槽之模擬,第二十六屆海洋工程研討會議論文集,101-108頁。
    12. 尹彰、周宗仁、林炤圭、黃偉柏 (1998),平面造波水池之特性探討,第二十屆海洋工程研討會議論文集,95-102頁。
    13. 李兆芳,劉正祺,藍元志 (1994),直擺式造波二階波浪特性,第十六屆海洋工程研討會議論文集,A60-A83頁。
    14. 李兆芳、鄭又銘和林大原 (2006),平面水池方向造波之數值模擬計算,第二十八屆海洋工程研討會議專題研究計畫,463-468頁。
    15. 周宗仁、尹彰、林炤圭、黃偉柏 (1998),有關平面造波水槽內波場方向分佈函數的探討,第二十屆海洋工程研討會議論文集,80-86頁。
    16. 周宗仁、林騰威、翁文凱 (2004),三維數值水槽之開發與研究(Ⅰ)—理論推導與平行計算運用,第二十六屆海洋工程研討會議論文集,109-115頁。
    17. 陳俊瑋 (2005),平面水池非線性方向造波之理論解析。國立成功大學水利及海洋工程研究所,碩士論文。
    18. 劉正琪 (2002),波浪通過潛堤之二階理論解析,國立成功大學水利及海洋工程研究所,博士論文。
    19. 劉宗龍、雷清宇和黃智偉 (2004),數值波浪水槽之發展與應用,第二十六屆海洋工程研討會議專題研究計畫,25-32頁。

    下載圖示 校內:立即公開
    校外:2007-07-19公開
    QR CODE