| 研究生: |
洪立軒 Hung, Li-Hsuan |
|---|---|
| 論文名稱: |
高倍率預濃縮之可攜式紙基晶片裝置 High-fold Sample Preconcentration on a Portable Paper-based Device |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 紙基分析裝置 、離子濃度極化 、聚焦現象 、預濃縮 、可攜帶式的預濃縮裝置 |
| 外文關鍵詞: | Paper-based Analytical Devices, Ion Concentration Polarization, Focusing, Preconcentration, Portable Preconcentrator Device |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今紙基微流道分析裝置正迅速地發展成為醫療分析及環境檢測中的重要角色,使人們的生活更加豐富及便利。然而,紙基晶片上的應用或分析卻很少於文獻中提及。在這篇論文中,我們藉由聚焦現象的理論,將文獻中的兩到三個理想漸縮管道合併為一個管道。這使得在三個併為一個的管道的濃縮倍率由本來的20倍提升至超過140倍。此舉不只證明了三管併一管在初始濃度 10e-005 M,施加電壓115伏特的情況下,可以達到聚焦現象理論的三倍,甚至僅僅只用三倍的樣品容量,就可以達到七倍之多。再者,我們第一個發展出可攜帶式的預濃縮裝置稱為CHAPPIE (廉價且易操作跟分析的獨立電力攜帶式預濃縮裝置),它不但可以只藉由電池就產生115伏特的電壓,而且也可以在任何地方操作,特別是發展中國家和偏遠地區。最後,為了證明這個可攜帶式裝置的實用性,我們以結合著FITC螢光粒子的牛血清白蛋白(FITC-BSA)驗證稀薄溶液中的蛋白質也能在此攜帶式裝置裡的紙基晶片上被預濃縮,且能在施加電壓115伏特的情況下,從初始濃度10e-005 M濃縮100倍達10e-003 M。這種方法能達到點對點照護(point- of-care)的目標,尤其是對於發展中國家、偏遠地區和第三國家。最後,我們是第一個測量在運作中的紙基晶片上的溫度。這個簡易的實驗說明了紙基晶片上的焦耳熱不會造成太大的影響。
Microfluidic paper-based analytical devices (µPADs) are rapidly becoming as one of importan medical analyses and environment inspections for enhancing human life. Nevertheless, there are still lots of issues and applications for proving the worth of the µPADs. In this thesis, we emerged two to three convergent channels to one by focusing concept. The concentration can be raised the factor from 20-fold to over 140-fold by using the triple channels. This means we are not just can improve three times than the original channel according to the focusing concept, we can reach seven times improvement than before just use three times volume of sample from the initial concentration of 10e-005 M under 115 V. Moreover, we are the first to develop the high-fold portable preconcentrator device called CHAPPIE (Cheap and Handy Analysis of Portable Preconcentrator included Isolated Electricity) that not only can supply 115 V just use batteries, but also can do the process anywhere especially those poor resources setting regions. Finally, we also use fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) for displaying that proteins in diluted solution can be concentrated by a factor of 100 from the initial concentration of 10e-005 M under the application of 115 V in CHAPPIE for practical applications. Furthermore,we are the first to measure the temperature on the µPAD. This facile experiment proves that the Joule heating on the µPADs is minor.
1. P. Yager, G. J. Domingo, and J. Gerdes., Point-of-Care Diagnostics for Global Health., Annual Review of Biomedical Engineering, 10, 107-144, 2008.
2. G. M. Whitesides., The Origins and the Future of Microfluidics., Nature, 442, 368-373, 2006.
3. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl., Microfluidic Diagnostic Technologies for Global Public Health., Nature, 442, 412-418, 2006.
4. C. D. Chin, V. Linder, and S. K. Sia., Lab-on-a-chip devices for global health: Past studies and future opportunities., Lab on a Chip, 7,41-57,2007.
5. P. J. Imperato., The Potential of Diagnostics for Improving Community Health in Less Developed Countries., Journal of Community Health, 10, 201-206, 1985.
6. X. Mao, and T. J. Huang., Microfluidic Diagnostics for the Developing World., Lab on a Chip, 12, 1412-1416, 2012.
7. A. Tefferi, and J. W. Vardiman., Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms., Leukemia, 22, 14-22, 2008.
8. C. D. Chin, V. Linder and S. K. Sia., Commercialization of Microfluidic Point-of-Care Diagnostic Devices., Lab on a Chip, 12, 2118-2134, 2012.
9. V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams., Point of Care Diagnostics: Status and Future., Analytical Chemistry, 84, 487-515, 2012.
10. J. Davy., An Account of Some Experiments on Different Combinations of Fluoric Acid., Philosophical Transactions of the Royal Society, 102, 352-369, 1812.
11. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides., Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays., Angewandte Chemie International Edition, 46, 1318-1320, 2007.
12. A. W. Martinez, S. T. Phillips, and G. M. Whitesides., Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices., Analytical Chemistry, 82, 3-10, 2010.
13. R. Y. T. Chiu, E. Jue, A. T. Yip, A. R. Berg, S. J. Wang, A. R. Kivnick, P. T. Nguyen and D. T. Kamei., Simultaneous Concentration and Detection of Biomarkers on Paper., Lab on a Chip, 14, 3021-3028, 2014.
14. M. C. Morales, H. Lin and J. D. Zahn., Continuous Microfluidic DNA and Protein Trapping and Concentration by Balancing Transverse Electrokinetic Forces., Lab on a Chip, 12, 99-108, 2012.
15. K. D. Huang, and R. J. Yang., A Nanochannel-Based Concentrator Utilizing the Concentration Polarization Effect., Electrophoresis, 29, 4862-4870, 2008.
16. S. M. Kim, M. A. Burns, and E. F. Hasselbrink., Electrokinetic Protein Preconcentration Using a Simple Glass/Poly(dimethylsiloxane) Microfluidic Chip., Analytical Chemistry, 78, 4779-4785, 2006.
17. A. K. Singh, D. J. Throckmorton, B. J. Kirby, and A. P. Thompson., A Novel Miniaturized Protein Preconcentrator Based On Eletric Fieldaddressable Retention And Release., Kluwer Academic Publishers, I, 347-349, 2002.
18. R. S. Foote, J. Khandurina, S. C. Jacobson, and J. M. Ramsey., Preconcentration of Proteins on Microfluidic Devices Using Porous Silica Membranes., Analytical Chemistry, 77, 57-63, 2005.
19. S. J. Kim, Y. A. Song, and J. Han., Nanofluidic Concentration Devices for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications., Chemical Society Reviews, 39, 912-922, 2010.
20. M. Kim, M. Jia and T. Kim., Ion Concentration Polarization in a Single and Open Microchannel Induced by a Surface-patterned Permselective Film., Analyst, 138, 1370-1378, 2013.
21. S. H. Ko, Y. A. Song, S. J. Kim, M. Kim, J. Han and K. H. Kang., Nanofluidic Preconcentration Device in a Straight Microchannel Using Ion Concentration Polarization., Lab on a Chip, 14, 4472-4482, 2012.
22. R. Zerdoumi, K. Oulmi , and S. Benslimane., Electrochemical Characterization of the CMX Cation Exchange Membrane in Buffered Solutions: Effect on Concentration Polarization and Counterions Transport Properties., Desalination, 340, 42-48, 2014.
23. E. Fu, T. Liang, P. S. Mihalic, J. Houghtaling, S. Ramachandran, and P. Yager., Two-Dimensional Paper Network Format That Enables Simple Multistep Assays for Use in Low-Resource Settings in the Context of Malaria Antigen Detection., Analytical Chemistry, 84, 4574-4579, 2012.
24. R. J. Yang, H. H. Pu, and H. L. Wang., Ion Concentration Polarization on Paper-Based Microfluidic Devices and Its Application to Preconcentrate Dilute Sample Solutions., Biomicrofluidics, 9 ,014122, 2015.
25. V. Leung, A. A. M. Shehata, C. D. M. Filipe, and R. Pelton., Streaming Potential Sensing in Paper-based Microfluidic Channels., Colloids and Surfaces A: Physicochemical Engineering Aspects, 364, 16-18, 2010.
26. P. Zhang., Application of Ion Concentration Polarization to Water Desalination and Active Control of Analytes in Paper., Mechanical and Industrial Engineering University of Toronto.
27. N. K. Thom, G. G. Lewis, K. Yeung and S. T. Phillips., Quantitative Fluorescence Assays Using a Self-Powered Paper-Based Microfluidic Device and a Camera-Equipped Cellular Phone., RSC Advances, 4, 1334-1340, 2014.
28. D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry., Recent Developments in Paper-Based Microfluidic Devices., Analytical Chemistry, 87, 19-41, 2015.
29. Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin., Rapid Prototyping of Paper-Based Microfluidics with Wax for Low-cost, Portable Bioassay., Electrophoresis, 30, 1-4, 2009.
30. A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta and G. M. Whitesides., FLASH: A Rapid Method for Prototyping Paper-based Microfluidic Devices., Lab on a Chip, 8, 2146-2150, 2008.
31. V. F. Curto, N. L. Ruiz, L. F. C. Vallvey, A. J. Palma, F. B. Lopez and D. Diamond., Fast Prototyping of Paper-Based Microfluidic Devices by Contact Stamping Using Indelible Ink., RSC Advances, 3, 18811-18816, 2013.
32. H. Yagoda., Preliminary Paper., Industrial and Engineering Chemistry, 9, 79-82, 1937.
33. T. Songjaroen, W. Dungchai, O. Chailapakul, and W. Laiwattanapaisal., Novel, Simple and Low-cost Alternative Method for Fabrication of Paper-based Microfluidics by Wax Dipping., Talanta, 85, 2587- 2593, 2011.
34. J. Noiphung, T. Songjaroen, W. Dungchai, C. S. Henry, O. Chailapakul, and W. Laiwattanapaisal., Electrochemical Detection of Glucose from Whole Blood Using Paper-Based Microfluidic Devices., Analytica Chimica Acta, 788, 39-45, 2013.
35. Y. Wu, P. Xue, Y. Kang, and K. M. Hui., Paper-Based Microfluidic Electrochemical Immunodevice Integrated with Nanobioprobes onto Graphene Film for Ultrasensitive Multiplexed Detection of Cancer Biomarkers., Analytical Chemistry, 85, 8661-8668, 2013.
36. S. Ma, Y. Tang, J. Liu, and J. Wu., Visible Paper Chip Immunoassay for Rapid Determination of Bacteria in Water Distribution System., Talanta, 120, 135-140, 2014.
37. E. Carrilho, A. W. Martinez, and G. M. Whitesides., Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics., Analytical Chemistry, 81, 7091-7095, 2009.
38. K. Abe, K. Suzuki, and D. Citterio., Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper., Analytical Chemistry, 80, 6928-6934, 2008.
39. X. Li, J. Tian, G. Garnier, and W. Shen., Fabrication of Paper-Based Microfluidic Sensors by Printing., Colloids and Surfaces B: Biointerfaces, 76, 564-570, 2010.
40. J. Olkkonen, K. Lehtinen, and T. Erho., Flexographically Printed Fluidic Structures in Paper., Analytical Chemistry, 82, 10246-10250, 2010.
41. E. M. Fenton, M. R. Mascarenas, G. P. Lo´pez, and S. S. Sibbett., Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping., ACS Applied Materials & Interfaces, 1, 124-129. 2009.
42. J. Nie, Y. Liang, Y. Zhang, S. Le, D. Lia and S. Zhang., One-Step Patterning of Hollow Microstructures in Paper by Laser Cutting to Create Microfluidic Analytical Devices., Analyst, 138, 671-676, 2013.
43. E. Evans, E. F. M. Gabriel, W. K. T. Coltro and C. D. Garcia., Rational Selection of Substrates to Improve Color Intensity and Uniformity on Microfluidic Paper-Based Analytical Devices., Analyst, 139, 2127-2132, 2014.
44. E. Carrilho, A. W. Martinez, and G. M. Whitesides., Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics., Analytical Chemistry, 81, 7091-7095, 2009.
45. E. Fu, T. Liang, J. Houghtaling, S. Ramachandran, S. A. Ramsey, B. Lutz, and P. Yager., Enhanced Sensitivity of Lateral Flow Tests Using a Two-Dimensional Paper Network Format., Analytical Chemistry, 83, 7941-7946, 2011.
46. Z. Nie, F. Deiss, X. Liu, O. Akbulut and G. M. Whitesides., Integration of Paper-based Microfluidic Devices with Commercial Electrochemical Readers., Lab on a Chip, 10, 3163-3169, 2010.
47. B. J. Toley, B. McKenzie, T. Liang, J. R. Buser, P. Yager, and E. Fu., Tunable-Delay Shunts for Paper Microfluidic Devices., Analytical Chemistry, 85, 11545-11552, 2013.
48. D. L. Giokas, G. Z. Tsogas, and A. G. Vlessidis., Programming Fluid Transport in Paper-Based Microfluidic Devices Using Razor-Crafted Open Channels., Analytical Chemistry, 86, 6202-6207, 2014.
49. E. P. Randviir and C. E. Banks., Electrode Substrate Innovation for Electrochemical Detection in Microchip Electrophoresis., Electrophoresis, 2015, DOI: 10.1002/elps.201500153.
50. W. J. Zhu, D. Q. Feng, M. Chen, Z. D. Chen, R. Zhu, H. L. Fang, and W. Wang., Bienzyme Colorimetric Detection of Glucose with Self-Calibration Based on Tree-Shaped Paper Strip., Sensors and Actuators B: Chemical, 190, 414-418, 2014.
51. A. Fraiwan, S. Mukherjee, S. Sundermier, H. S. Lee, and S. Choi., A Paper-Based Microbial Fuel Cell: Instant Battery For Disposable Diagnostic Devices., Biosensors and Bioelectronics, 49, 410-414, 2013.
52. T. H. Nguyen, A. Fraiwan, and S. Choi., Paper-Based Batteries: A Review., Biosensors and Bioelectronics, 54, 640- 649, 2014.
53. A. W. Martinez, S. T. Phillips, Z. Nie, C. M. Cheng, E. Carrilho, B. J. Wileya and G. M. Whitesides., Programmable Diagnostic Devices Made from Paper and Tape., Lab on a Chip, 10, 2499-2504, 2010.
54. J. Houghtaling, T. Liang, G. Thiessen, and E. Fu., Dissolvable Bridges for Manipulating Fluid Volumes in Paper Networks., Analytical Chemistry, 85, 11201-11204. 2013.
55. E. V. Dydek and M. Z. Bazant., Nonlinear Dynamics of Ion Concentration Polarization in Porous Media: The Leaky Membrane Model., AIChE Journal, 59, 3539-3555, 2013.
56. A. Höltzel, and U. Tallarek., Ionic Conductance of Nanopores in Microscale Analysis Systems: Where Microfluidics Meets Nanofluidics., Journal of Separation Science, 30, 1398-1419, 2007.
57. S. J. Kim, Y. C. Wang, J. H. Lee, H. Jang, and J. Han., Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel., Physical Review Letters, 99, 044501, 2007.
58. D. Kim, A. Raj, L. Zhu, R. I. Masel and M. A. Shannon., Non-Equilibrium Electrokinetic Micro/Nano Fluidic Mixer., Lab on a Chip, 8, 625-628, 2008.
59. E. Choi, K. Kwon, S. J. Lee, D. Kim and J. Park., Non-Equilibrium Electrokinetic Micromixer with 3D Nanochannel Networks., Lab on a Chip, 15, 1794-1798, 2015.
60. Y. C. Wang, A. L. Stevens, and J. Han., Million-fold Preconcentration of Proteins and Peptides by Nanofluidic Filter., Analytical Chemistry, 77, 4293-4299, 2005.
61. J. A. Wells and H. Swerdlow., Fluidic Preconcentrator Device for Capillary Electrophoresis of Proteins., Analytical Chemistry, 75, 5207-5212, 2003.
62. S. J. Kim, S. H. Ko, K. H. Kang and J. Han., Direct Seawater Desalination by Ion Concentration Polarization., Nature Nanotechnology, 5, 297-301, 2010.
63. J. Khandurina, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey., Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis., Analytical Chemistry, 71, 1815-1819, 1999.
64. S. Song, A. K. Singh, and B. J. Kirby., Electrophoretic Concentration of Proteins at Laser-Patterned Nanoporous Membranes in Microchips., Analytical Chemistry, 76, 4589-4592, 2004.
65. M. M. Gong, P. Zhang, B. D. MacDonald, and D. Sinton., Nanoporous Membranes Enable Concentration and Transport in Fully Wet Paper-Based Assays., Analytical Chemistry, 86, 8090-8097, 2014.
66. S. J. Kim, L. D. Li, and J. Han., Amplified Electrokinetic Response by Concentration Polarization near Nanofluidic Channel., Langmuir, 25, 7759-7765, 2009.
67. C. L. Chen, and R. J. Yang., Effects of Microchannel Geometry on Preconcentration Intensity in Microfluidic Chips with Straight or Convergent–Divergent Microchannels., Electrophoresis, 33, 751-757, 2012.
68. R. Ibanez, D. F. Stamatialis, and M. Wessling., Role of Membrane Surface in Concentration Polarization at Cation Exchange Membranes., Journal of Membrane Science, 239, 119-128, 2004.
69. J. J. Krol, M. Wessling, and H. Strathmann., Concentration Polarization with Monopolar Ion Exchange Membranes: Current-Voltage Curves and Water Dissociation., Journal of Membrane Science, 162, 145-154, 1999.
70. S. J. Kim, S. H. Ko, K. H. Kang and J. Han., Direct Seawater Desalination by Ion Concentration Polarization., Nature Nanotechnology, 5, 297-301, 2010
71. R. B. Schoch., Transport Phenomena in Nanofluidics., Reviws of Modern Physics, 80, 839-883, 2008.
72. J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides., Components for Integrated Poly(Dimethylsiloxane) Microfluidic Systems., Electrophoresis, 23, 3461-3473, 2002.
73. J. C. McDonaldONALD, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides., Fabrication of Microfluidic Systems in Poly (Dimethylsiloxane)., Electrophoresi, 21, 27-40, 2000.
74. J. C. McDonaldONALD, and G. M. Whitesides., Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices., Electrophoresis, 21, 27-40, 2000.
75. R. J. Yang, C. C. Chang, S. B. Huang and G. B. Lee., A New Focusing Model and Switching Approach for Electrokinetic Flow Inside Microchannels., Journal of Micromechanics and Microengineering, 15, 2141-2148, 2005.
76. D. Erickson, D. Sinton and D. Li., Joule Heating and Heat Transfer in Poly(Dimethylsiloxane) Microfluidic Systems., Lab on a Chip, 3, 141-149, 2003.
77. I. Rubinstein and B. Zaltzman., Electro-osmotically Induced Convection at a Permselective Membrane., Physical Review E, 62, 2238-2251, 2000.
78. K. D. Huang, and R. J. Yang., Formation of Ionic Depletion/enrichment Zones in a Hybrid Micro-/nano-channel., Microfluidics and Nanofluidics, 5, 631-638, 2008.