簡易檢索 / 詳目顯示

研究生: 蕭琨錡
Hsaio, Kun-Chi
論文名稱: 不同製程製備之 ZnSb 熱電材料微觀結構與熱電性質之比較研究及其熱電模組評估
Comparative Study of the Microstructure and Thermoelectric Properties of ZnSb Prepared via Different Synthesis Processes and Evaluated in Thermoelectric Modules
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 97
中文關鍵詞: 熱電材料熱電模組綠色能源製程優化
外文關鍵詞: Thermoelectric materials, Thermoelectric modules, Process optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球能源需求持續成長,廢熱回收技術的重要性日益提升,熱電材料可透過 Seebeck 效應將溫差直接轉換為電能,其中 ZnSb 因具備中溫操作範圍、材料成本低與環境友善等特性,被視為具潛力之中溫熱電材料。然而,其熱電性能高度依賴製備製程,特別是微觀結構與相穩定性仍有待系統性研究。本研究設計三種不同 ZnSb 合成製程,包含高溫熔煉結合球磨與放電等離子燒結(A、B 製程),以及以機械合金化取代高溫熔煉並直接進行放電等離子燒結之 C 製程,並透過 XRD、SEM 與 TEM 分析其晶相組成與微觀結構,同時量測電導率、Seebeck 係數、熱導率與熱電優值(ZT),並進一步應用於 ZnSb/AgSe 熱電模組以評估實際發電可行性。實驗結果顯示,C 製程可在不經高溫熔煉下形成穩定且純淨的 ZnSb 主相,具備最細小且均勻的晶粒結構、最高相對密度與最低孔隙率,並展現穩定電性與較低熱導率,其 ZT 值可達約 0.94;相較之下,A 與 B 製程於高溫熔煉條件下易產生 Zn 揮發與結構不穩定現象。模組測試與能耗分析結果亦顯示,C 製程在具備實際能量轉換能力的同時,於製作時間、能耗與碳排放上皆明顯低於其他製程,顯示其為兼顧熱電性能與製程經濟性之 ZnSb 中溫熱電材料製備途徑。

    This study investigates the influence of fabrication processes on the microstructure and thermoelectric performance of ZnSb mid-temperature thermoelectric materials. Among the examined routes, mechanical alloying combined with spark plasma sintering (SPS) produces ZnSb with finer grains, higher density, and lower thermal conductivity, achieving a ZT value of approximately 0.94. In contrast, melting-based processes suffer from Zn volatilization and grain coarsening. Module testing and energy analysis further demonstrate that the optimized process enables practical thermoelectric performance with reduced energy consumption and carbon emissions.

    摘要 II Abstract III 致謝 XI 目錄 XII 圖目錄 XVI 表目錄 XVII 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 熱電材料製程 2 1-2-2 熱電模組 4 1-2-3 熱電模組介面阻抗問題 7 1-3 研究動機 9 1-3-1 熱電材料製程 9 1-3-2 熱電模組製程 10 第2章 基本理論 12 2-1 熱電製程 12 2-1-1 球磨 12 2-1-2 機械合金化 13 2-1-3 高溫爐燒結熱電材料 14 2-1-4 SPS 燒結機制與提升熱電效應原理 15 2-2 熱電發電機(TEG) 17 2-2-1 熱電模組 17 第3章 實驗方法與設備 19 3-1 ZnSb粉末冶金製程之粉末製作 19 3-1-1 ZnSb粉末球磨合金化 20 3-1-2 粉末粒徑量測 20 3-2 三種不同製程製備ZnSb 21 3-2-1 製程A 22 3-2-1 製程B 24 3-2-2 製程C 25 3-3 粉體晶相分析 26 3-3-1 粉體XRD 晶相分析 26 3-4 塊材性質量測 26 3-4-1 熱傳導性質量測 26 3-4-2 電阻率與Seebeck係數量測 27 3-4-3 XRD 分析 28 3-4-4 微觀結構分析 28 3-4-5 相對密度測量 28 3-5 熱電模組組裝 29 3-6 熱電模組功率量測 31 3-7 實驗設備 32 第4章 結果與討論 39 4-1 ZnSb 合金製程成分分析 39 4-1-1 不同合成ZnSb合金方法 39 4-1-2 三種製程成分 49 4-1-3 三種製程 ZnSb 塊材相對密度與孔隙率比較 51 4-2 ZnSb熱電性質分析 54 4-2-1 ZnSb結構分析 54 4-2-2 ZnSb熱電性質量測 63 4-3 ZnSb/AgSe熱電模組分析 67 4-4 ZnSb熱電材料製成能耗 69 第5章 結論與未來展望 71 5-1 結論 71 5-2 未來展望 72 參考文獻 74

    1.Thermoelectric Module Market Size, Share & COVID-19 Impact Analysis, By Model (Single Stage and Multi Stage), By Type (Bulk, Micro, and Thin Film), By End User (Consumer Electronics, Manufacturing and Industrial, IT and Telecom, Automotive, Healthcare, Aerospace and Defense, Oil and Gas, and Others), and Regional Forecast, 2023-2030
    2.Blichfeld, A. and B. Iversen, Fast direct synthesis and compaction of phase pure thermoelectric ZnSb. Journal of Materials Chemistry C, 2015. 3(40): p. 10543-10553.
    3.Biswas, R., S. Vitta, and T. Dasgupta, Influence of zinc content and grain size on enhanced thermoelectric performance of optimally doped ZnSb. Materials Research Bulletin, 2022. 149: p. 111702.
    4.Castellero, A., et al., Effect of processing routes on the synthesis and properties of Zn4Sb3 thermoelectric alloy. Journal of Alloys and Compounds, 2015. 653: p. 54-60.
    5.Palraj, J., et al., High thermoelectric performance in p-type ZnSb upon increasing Zn vacancies: an experimental and theoretical study. Journal of Materials Chemistry A, 2024.
    6.Palaporn, D., et al., Thermoelectric materials for space explorations. Materials Advances, 2024. 5(13): p. 5351-5364.
    7.Shi, X.-L., J. Zou, and Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chemical reviews, 2020. 120(15): p. 7399-7515.
    8.Mouko, H.I., et al., Manufacturing and performances of silicide-based thermoelectric modules. Energy Conversion and Management, 2021. 242: p. 114304.
    9.Zhao, Y., et al., Experimental investigation of heat pipe thermoelectric generator. Energy Conversion and Management, 2022. 252: p. 115123.
    10.Huu, T.N., T.N. Van, and O. Takahito, Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Applied energy, 2018. 210: p. 467-476.
    11.Chen, L., R. Liu, and X. Shi, Thermoelectric materials and devices. 2020: Elsevier.
    12.Fan, X., et al., Fabrication and reliability evaluation of Yb0. 3Co4Sb12/Mo–Ti/Mo–Cu/Ni thermoelectric joints. Ceramics International, 2015. 41(6): p. 7590-7595.
    13.Liu, W. and S. Bai, Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module. Journal of Materiomics, 2019. 5(3): p. 321-336.
    14.Zhang, A. and B. Wang, Temperature and electric potential fields of an interface crack in a layered thermoelectric or metal/thermoelectric material. International Journal of Thermal Sciences, 2016. 104: p. 396-403.
    15.Lo, L.-C. and A.T. Wu, Interfacial reactions between diffusion barriers and thermoelectric materials under current stressing. Journal of electronic materials, 2012. 41: p. 3325-3330.
    16.Miao, X., et al., Symmetric strain fields as diffusion barrier: A new avenue to achieve diffusion-resistant, thermally stable thermoelectric interfaces. Chemical Engineering Journal, 2025. 505: p. 159663.
    17.Chen, C.-H., W.-T. Yeh, and T.-H. Chuang, Interfacial reactions in Zn4Sb3/titanium diffusion couples. Journal of Alloys and Compounds, 2021. 881: p. 160630.
    18.Chen, L.-W., et al., Design of diffusion barrier and buffer layers for β-Zn4Sb3 mid-temperature thermoelectric modules. Journal of Alloys and Compounds, 2018. 762: p. 631-636.
    19.Ni, J.E., et al., The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating. Journal of Materials Science, 2013. 48: p. 6233-6244.
    20.Sugahara, T., et al., Fabrication with semiconductor packaging technologies and characterization of a large‐scale flexible thermoelectric module. Advanced Materials Technologies, 2019. 4(2): p. 1800556.
    21.Sun, D., et al., Modeling of high power light-emitting diode package integrated with micro-thermoelectric cooler under various interfacial and size effects. Energy Conversion and Management, 2019. 179: p. 81-90.
    22.Tokita, M., Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics, 2021. 4(2): p. 160-198.
    23.Rowe, D.M., Thermoelectrics handbook: macro to nano. 2005: CRC press.
    24.Fischer, A., et al., Thermal and vibrational properties of thermoelectric ZnSb: Exploring the origin of low thermal conductivity. Physical Review B, 2015. 91(22): p. 224309.
    25.Sassi, S., et al., Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Applied Physics Letters, 2014. 104(21).
    26.Lin, B., et al., Observation of annealing twin nucleation at triple lines in nickel during grain growth. Acta Materialia, 2015. 99: p. 63-68.
    27.Wang, Z., et al., Effect of Zn atomic diffusion due to pulsed electric field treatment on the thermoelectric properties of Zn–Sb films. Materials Science in Semiconductor Processing, 2023. 161: p. 107473.
    28.Shih, Y.-C., et al., Enhanced ZnSb Thermoelectric Materials with Graphene Barriers for Waste Heat Sensing and Energy Harvesting. Sensors & Materials, 2025. 37.
    29.Maurya, V., et al., Thermoelectric characterization of ZnSb by first-principles method. AIP Advances, 2019. 9(8).
    30.Grønbech, T.B.E., et al., Weak bonding and anharmonicity in thermoelectric ZnSb. Advanced Functional Materials, 2024. 34(33): p. 2401703.
    31.Gandi, A.N. and N. Dahare, Thermoelectric transport in zinc antimonide ZnSb. Physica B: Condensed Matter, 2023. 666: p. 415068.
    32.Berland, K., et al., Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb. Journal of Applied Physics, 2016. 119(12).
    33.Amsler, M., et al., ZnSb polymorphs with improved thermoelectric properties. Chemistry of Materials, 2016. 28(9): p. 2912-2920.
    34.Chu, Y.-H., et al., Suppression of bipolar transport and enhanced zT values of porous ZnSb by addition of hydrothermally synthesized Sb. Journal of the European Ceramic Society, 2019. 39(14): p. 4177-4183.
    35.Bu, Z., et al., A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nature communications, 2022. 13(1): p. 237.
    36.Lee, H.B., et al., Thermoelectric properties of screen-printed ZnSb film. Thin Solid Films, 2011. 519(16): p. 5441-5443.
    37.Scherrer, H., et al., Thermoelectrics Handbook: Macro to Nano. 2018.
    38.Van Toan, N., et al., Thermoelectric generator with a high integration density for portable and wearable self-powered electronic devices. Energy conversion and management, 2021. 245: p. 114571.
    39.Van Toan, N., et al., Micro-thermoelectric generators: material synthesis, device fabrication, and application demonstration. 2022: IntechOpen.
    40.Kanas, N., et al., All-oxide thermoelectric module with in situ formed non-rectifying complex p–p–n junction and transverse thermoelectric effect. ACS omega, 2018. 3(8): p. 9899-9906.
    41.113年度電力排碳係數. Available from: https://www.moeaea.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=26678.

    QR CODE