| 研究生: |
王郁智 Wang, Yu-Chih |
|---|---|
| 論文名稱: |
三維有限元素分析:肱骨大結節骨折施以不同修復方式之力學探討 Finite Element Analysis of Mechanics about Different Fixations for Greater Tuberosity Fractures of the Humerus |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 共同指導教授: |
蘇維仁
Su, Wei-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 肱骨大節結骨折 、骨釘 、縫線鉚釘 、骨密度 、有限元素分析 |
| 外文關鍵詞: | Greater tuberosity fracture, Bone screw, Suture anchor, Bone mineral density, Finite element method |
| 相關次數: | 點閱:176 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肱骨大節結(Greater tuberosity)骨折的發生率占了肱骨近端的骨折的14%到25%左右,而目用於前臨床的治療有骨釘直接固定或縫線鉚釘縫合大節結碎片。文獻指出對於年長或是骨鬆患者使用骨釘固定法修復,其再位移的機率會增加,而對於此類病患則縫線鉚釘法修復法有較佳的結果。然而,使用縫線鉚釘法修復則因內側鉚釘穿過棘上肌肌腱(Supraspinatus tendon),可能會對於肌腱造成微小撕裂傷。本研究之目的是為了調查不同的骨質下,使用不同的修復方式對其修復強度、以及軟組織的應力分布的影響。
我們根據近期臨床提供的肱骨大節結骨折修復方法,建立了三維有限元素分析模型包含雙骨釘(Two screw fixation)、縫線縫合橋(Suture-bridge)、雙排縫線(Double-row)、與單排縫線(Single-row)等四種固定方法。並施以三種不同的骨質密度與0˚外展附載力探討其生物力學的影響。
本篇研究結果包含了不同骨密度下四種大節結骨折修復方法之修復強度, 及其應力作用於棘上肌肌腱的大小。結果顯示:骨密度(Bone Mineral Density)小於0.1 g/cm3 時,使用骨釘修復的強度會大大降低,而在骨密度大於 0.8 g/cm3 的情況下雙骨釘(Two screw fixation)與其他三種縫線鉚釘(Suture anchor) 修復法的修復強度沒有太大的差異。在相同的骨密度(0.8 g/cm3) 與力量 370 N 的附載下,雙排縫線(Double-row)會在內側的縫線處對棘上肌產生最大von-Mises 應力 57.68 MPa,縫線縫合橋(Suture-bridge)產生16.69 MPa次之,單排縫線(Single-row)產生8.43 MPa最小。而雙骨釘(Two screw fixation)則對棘上肌肌腱無直接影響,其最大應力 6.24MPa與本實驗之對照組相同。
根據本篇實驗結果,我們建議肱骨大節結的修復在骨釘與縫線鉚釘的選擇上,如果其骨質密度小於0.1 g/cm3則使用縫線鉚釘修復其強度較為理想。而在各種臨床縫線鉚釘修復方法的選擇上,雙排縫線(Double-row)相較於其他的修復方法強度較強,但其內排縫線會在肌腱內側產生一個較大的集中應力,增加對棘上肌肌腱產生傷害的可能。
Isolated greater tuberosity (GT) fractures of the humerus are common. The rates of incidence have been reported in 14% to 25% among proximal humeral fractures. Either open surgeries or percutaneous techniques using screws or suture anchors are well accepted for the reduction and fixation of GT fractures. Bone screws are the common tool generally described for fixation of GT fractures in both open and arthroscopic surgeries. Previous studies suggested that surgeons should exercise caution using screw fixation for GT fractures in older and osteoporotic bones because the screw provides suboptimal fixation in osteopenia bone of the GT fragments and lead to further damage the fracture fragments. In such scenarios, the suture anchor fixations might be the superior options. Using suture anchor repair techniques can provide a better outcome to the older or osteoporosis patients, but these procedures might damage the rotator cuff because the medial anchor is inserted through an intact cuff attached to the greater tuberosity fragment. Therefore, our purpose was to investigate the strength of different fixation constructs, using suture anchors or screws under different bone mineral densities (BMD) and which kind of suture anchor techniques had the maximum stress appeared on tendon.
To investigate the strength of different GT fracture fixation techniques, a finite element GT fracture model was built. It consisted of four different fixations: Two screw (TS), Suture-bridge (SB), Double-row (DR) and Single-row (SR) fixations. All of these fixation conditions were provided a 370 N loading under different bone qualities at 0˚ abduction.
Resulting stresses at the supraspinatus tendon and comparisons of different fixation strength from different BMD were studied. The definition of fixation strength was the migration of GT fragment relative to the humerous. Among all of these groups, the TS fixation strength was the weakest when the BMD was under 0.1 g/cm3. And the Double-row fixation had a superior strength in the entire suture groups. Additionally, the maximum von-Mises stress of DR technique was 57.68 MPa, which is more than the other fixations under a 370 N loading at 0˚ abduction.
In our study, we suggest that the suture anchor construct was the superior option when BMD is less than 0.1 g/cm3. Additionally, Double-row fixation has some negative effects that would cause a large stress concentration at the medial row and damage the rotator cuff tendon.
1. Gruson, K.I., D.E. Ruchelsman, and N.C. Tejwani, Isolated tuberosity fractures of the proximal humeral: current concepts. Injury, 2008. 39(3): p. 284-98.
2. Bahrs, C., et al., Mechanism of injury and morphology of the greater tuberosity fracture. J Shoulder Elbow Surg, 2006. 15(2): p. 140-7.
3. Green, A. and J. Izzi, Jr., Isolated fractures of the greater tuberosity of the proximal humerus. J Shoulder Elbow Surg, 2003. 12(6): p. 641-9.
4. Robinson, C.M., et al., Injuries associated with traumatic anterior glenohumeral dislocations. J Bone Joint Surg Am, 2012. 94(1): p. 18-26.
5. Bhatia, D.N., et al., Surgical treatment of comminuted, displaced fractures of the greater tuberosity of the proximal humerus: a new technique of double-row suture-anchor fixation and long-term results. Injury, 2006. 37(10): p. 946-52.
6. Stubbs, S.N. and R.E. Hunter, Complete, superior labral radial tear and type II SLAP tear associated with greater tuberosity fracture. Arthroscopy-the Journal of Arthroscopic and Related Surgery, 2004. 20(6): p. 70-72.
7. George, M.S., Fractures of the greater tuberosity of the humerus. J Am Acad Orthop Surg, 2007. 15(10): p. 607-13.
8. Carrera, E.F., et al., Fixation of greater tuberosity fractures. Arthroscopy, 2004. 20(8): p. e109-11.
9. Bonsell, S. and D.A. Buford, Jr., Arthroscopic reduction and internal fixation of a greater tuberosity fracture of the shoulder: a case report. J Shoulder Elbow Surg, 2003. 12(4): p. 397-400.
10. Gartsman, G.M., E. Taverna, and S.M. Hammerman, Arthroscopic treatment of acute traumatic anterior glenohumeral dislocation and greater tuberosity fracture. Arthroscopy, 1999. 15(6): p. 648-50.
11. Taverna, E., V. Sansone, and F. Battistella, Arthroscopic treatment for greater tuberosity fractures: rationale and surgical technique. Arthroscopy, 2004. 20(6): p. e53-7.
12. Lin, C.L., et al., Suture anchor versus screw fixation for greater tuberosity fractures of the humerus--a biomechanical study. J Orthop Res, 2012. 30(3): p. 423-8.
13. Lee, S.U., C. Jeong, and I.J. Park, Arthroscopic fixation of displaced greater tuberosity fracture of the proximal humerus. Knee Surg Sports Traumatol Arthrosc, 2012. 20(2): p. 378-80.
14. Ji, J.H., W.Y. Kim, and K.H. Ra, Arthroscopic double-row suture anchor fixation of minimally displaced greater tuberosity fractures. Arthroscopy, 2007. 23(10): p. 1133 e1-4.
15. Ji, J.H., et al., Arthroscopic fixation technique for comminuted, displaced greater tuberosity fracture. Arthroscopy, 2010. 26(5): p. 600-9.
16. Song, H.S. and G.R. Williams, Jr., Arthroscopic reduction and fixation with suture-bridge technique for displaced or comminuted greater tuberosity fractures. Arthroscopy, 2008. 24(8): p. 956-60.
17. Matsuhashi, T., et al., Tensile properties of a morphologically split supraspinatus tendon. Clin Anat, 2013.
18. Reilly, P., et al., Mechanical factors in the initiation and propagation of tears of the rotator cuff. Quantification of strains of the supraspinatus tendon in vitro. Journal of Bone and Joint Surgery-British Volume, 2003. 85(4): p. 594-9.
19. Jost, P.W., et al., Suture number determines strength of rotator cuff repair. J Bone Joint Surg Am, 2012. 94(14): p. e100.
20. Jon Mallatt; Patricia Brady, P.D.W., Human Anatomy (5th edition). 2007: Benjamin-Cummings Pub Co; 5 edition. 846.
21. Neer, C.S., 2nd, Displaced proximal humeral fractures. I. Classification and evaluation. J Bone Joint Surg Am, 1970. 52(6): p. 1077-89.
22. Neer, C.S., 2nd, Displaced proximal humeral fractures: part I. Classification and evaluation. 1970. Clin Orthop Relat Res, 2006. 442: p. 77-82.
23. Neer, C.S., 2nd, Displaced proximal humeral fractures. II. Treatment of three-part and four-part displacement. J Bone Joint Surg Am, 1970. 52(6): p. 1090-103.
24. Kilcoyne, R.F., et al., The Neer classification of displaced proximal humeral fractures: spectrum of findings on plain radiographs and CT scans. AJR Am J Roentgenol, 1990. 154(5): p. 1029-33.
25. Neer, C.S., 2nd, Displaced proximal humeral fractures. Part I. Classification and evaluation. By Charles S. Neer, I, 1970. Clin Orthop Relat Res, 1987(223): p. 3-10.
26. Kim, K.C., et al., Arthroscopic fixation for displaced greater tuberosity fracture using the suture-bridge technique. Arthroscopy, 2008. 24(1): p. 120 e1-3.
27. Cadet, E.R. and C.S. Ahmad, Arthroscopic reduction and suture anchor fixation for a displaced greater tuberosity fracture: a case report. J Shoulder Elbow Surg, 2007. 16(4): p. e6-9.
28. Barvencik, F., et al., Age- and sex-related changes of humeral head microarchitecture: histomorphometric analysis of 60 human specimens. J Orthop Res, 2010. 28(1): p. 18-26.
29. Glaser, D.L. and F.S. Kaplan, Osteoporosis. Definition and clinical presentation. Spine (Phila Pa 1976), 1997. 22(24 Suppl): p. 12S-16S.
30. Kanis, J.A., Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int, 1994. 4(6): p. 368-81.
31. Knauss, P., [Material properties and strength behavior of the compact bone tissue at the coxal human-femur (author's transl)]. Biomed Tech (Berl), 1981. 26(12): p. 311-5.
32. Reilly, D.T., A.H. Burstein, and V.H. Frankel, The elastic modulus for bone. Journal of Biomechanics, 1974. 7(3): p. 271-5.
33. Ashman, R.B. and J.Y. Rho, Elastic modulus of trabecular bone material. Journal of Biomechanics, 1988. 21(3): p. 177-81.
34. Ashman, R.B., et al., A continuous wave technique for the measurement of the elastic properties of cortical bone. Journal of Biomechanics, 1984. 17(5): p. 349-61.
35. Wirtz, D.C., et al., Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics, 2000. 33(10): p. 1325-30.
36. Liu, C.-j.L.Z.-j., New progress of finite and micro finite element analysis in orthopedic. Journal of Dalian Medical University, 2014. 36.
37. Sano, H., I. Wakabayashi, and E. Itoi, Stress distribution in the supraspinatus tendon with partial-thickness tears: an analysis using two-dimensional finite element model. J Shoulder Elbow Surg, 2006. 15(1): p. 100-5.
38. Sano, H., et al., Stress distribution in the supraspinatus tendon after tendon repair: suture anchors versus transosseous suture fixation. Am J Sports Med, 2007. 35(4): p. 542-6.
39. Seki, N., et al., Mechanical environment of the supraspinatus tendon: three-dimensional finite element model analysis. Journal of Orthopaedic Science, 2008. 13(4): p. 348-353.
40. Terrier, A., et al., Total shoulder arthroplasty: downward inclination of the glenoid component to balance supraspinatus deficiency. J Shoulder Elbow Surg, 2009. 18(3): p. 360-5.
41. Terrier, A., P. Buchler, and A. Farron, Influence of glenohumeral conformity on glenoid stresses after total shoulder arthroplasty. J Shoulder Elbow Surg, 2006. 15(4): p. 515-20.
42. Nimura, A., et al., The superior capsule of the shoulder joint complements the insertion of the rotator cuff. J Shoulder Elbow Surg, 2012. 21(7): p. 867-72.
43. Wakabayashi, I., et al., Mechanical environment of the supraspinatus tendon: A two-dimensional finite element model analysis. Journal of Shoulder and Elbow Surgery, 2003. 12(6): p. 612-617.
44. Inoue, A., et al., Nonlinear stress analysis of the supraspinatus tendon using three-dimensional finite element analysis. Knee Surg Sports Traumatol Arthrosc, 2012.
45. Gerber, C., et al., Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am, 1999. 81(9): p. 1281-90.
46. Sano, H., et al., Degeneration at the insertion weakens the tensile strength of the supraspinatus tendon: a comparative mechanical and histologic study of the bone-tendon complex. J Orthop Res, 1997. 15(5): p. 719-26.
47. Cummins, C.A. and G.A. Murrell, Mode of failure for rotator cuff repair with suture anchors identified at revision surgery. J Shoulder Elbow Surg, 2003. 12(2): p. 128-33.
48. Ryan, T.M. and C.N. Shaw, Trabecular bone microstructure scales allometrically in the primate humerus and femur. Proc Biol Sci, 2013. 280(1758): p. 20130172.
49. Demarteau, O., et al., Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage. Osteoarthritis Cartilage, 2006. 14(6): p. 589-96.