| 研究生: |
陳建丞 Chen, Jian-Cheng |
|---|---|
| 論文名稱: |
氧化鈰和氧化鐵共同添加對於 Ca3Co3.915O9+δ(δ=0.33) 的顯微結構與熱電性質之影響 Effect of CeO2 and Fe2O3 Co-Dopant on the Microstructures and Thermoelectric Propertices of Ca3Co3.915O9+δ(δ=0.33) |
| 指導教授: |
方滄澤
Fang, Tsang-Tsk |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 氧化鈰 、氧化鐵 |
| 外文關鍵詞: | CeO2, Fe2O3 |
| 相關次數: | 點閱:59 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電(Thermoelectric,TE)材料 (Ca2CoO3)(CoO2)Δ(Δ~1.61) 可表示為 Ca3Co3.915O9+δ(δ=0.33)在近幾年已經成為研究 TE 材料的熱門材料之ㄧ。從前人的研究與我們團隊的努力下,對於 Ca3Co3.915O9.33 的固溶體形成因素,材料的導電機制以及 Seebeck 係數(thermopower)有深入的探討,且獲得許多寶貴的成果。對於 Ca3Co3.915O9.33 合成方法,本實驗根據前人的作法並加以改良出穩定且緻密的合成相條件。在 TE 性質改良面方面,是選擇新的方向作摻雜,利用鈰和鐵摻雜於 Ca3Co3.915O9.33 中,探討Ca3xCexCo3.915-yFeyO9.33 系統TE性質。
實驗方法以 CaCO3、Co3O4、CeO2 和 Fe2O3 四種初始原料,利用化學計量比以固態反應法製備實驗樣本。根據參考文獻的數據,我們決定將鈰的添加量固定在 x=0.1;鐵的添加量為 y=0.1、0.2、0.3 此三組和純相 x=0 y=0 做對照,探討純相 Ca3Co3.915O9.33 和摻雜鈰和鐵的Ca3xCexCo3.915-yFeyO9.33 系統之 TE 相關特性的差異。此外,利用掃描式電子顯微鏡(SEM)觀察各成分試片的微結構,可看出當添加小量的鈰和鐵後會在微結構組織產生明顯的變化。
Thermoelectric(TE) (Ca2CoO3)(CoO2)Δ(Δ~1.61) materials can be expressed as Ca3Co3.915O9+δ(δ=0.33),For recent years has become one kind of hot materials for research TE materials. We report the Ca3Co3.915O9.33 formation factors of solid solution,Seebeck coefficient(thermopower),and the conduction mechanism of materials in Ca3Co3.915O9.33 with in-depth discussion. We obtain valuable results for Ca3Co3.915O9.33 synthesis method,that the experiment was based on previous practices and to improve the synthesis of a stable and dense phase conditions. For improving the TE propertices of Ca3Co3.915O9.33,we choose a new direction for the doping .Using cerium and iron doped in Ca3Co3.915O9.33,and research the Ca3-xCexCo3.915-yFeyO9.33 system.
The experimental methods were used CaCO3,Co3O4,CeO2 and Fe2O3 four kinds of starting materials, and the use of stoichiometric experiments were prepared by solid state reaction samples. According to reference data, we decided to add the amount of cerium fixed x=0.1;iron addition amount were y=0.1、0.2、0.3 ,and then to compara pure phase(x=y=0) with the three series.We reach the differences with pure phase Ca3Co3.915O9.33 and doped cerium and iron Ca3-xCexCo3.915-yFeyO9.33 system characteristics of TE propertices.In addition,we the use of scanning electron microscopy (SEM),when we observe the microstructure for specimens of each component,and we can fine that doped a small amount of cerium and iron will create significant changes in microstructure tissue.
1.1834年法國錶匠 Jean Charles Athanase Peltier 發佈了珀爾帖效應(Peltier Effect)證實了 Seebeck effect 相反效果,此效應是說明不同溫度的交界處上升或下降取決於電流的方向。
2.朱旭山,「熱電材料與元件之發展與應用」,工業材料雜誌,220 期,第93-103 頁(2005)。
3.王伊男“奈米碲化鉛之水熱法合成及其火花電漿燒結體性質研究”成功大學材料科學與工程學系 碩士論文(2009)
4. Thermoelectrics Handbook :Macro to Nano, edited by D. M.Rowe, Ph.D.,D.Sc.,Ch3 (2005)
5.鄢永高,“AgPb<,m>SbTe<,2+m> 類化合物的制備與熱電性能,”武漢理工大學,博士論文 (2007)
6.R. Moubah1, S. Colis1 etc al “Structural and magnetic properties of layered Ca3Co4O9 thin films” Eur. Phys. J. B 66, 315–319 (2008)
7.G.D.Tang1,X.N.Xu,etc al“The spin-entropy enhancement induced by Ce doping in Ca3Co4O9+δ”EPL, 91 (2010) 17002
8.Paweł Smaczyński & Małgorzata Sopicka-Lizer,etc al “Low temperature synthesis of calcium cobaltites in a solid state reaction” J Electroceram (2007) 18,255–260
9.Chris D.Ling, Karina Aivazian,etc al“Structural investtigation of oxygen non-stoichiometry and cation doping in misfit-layered thermoelectric (Ca2CoO3-x)(CoO2)δ,δ~ 1.61”J.Solid State Chem. 180(2007)1446–1455
10.Ernest M.Levin and Howard F.McMurdie 著 Margie K.Reser編,“Phase Diagrams for Ceramists”Supplement 美國陶瓷協會(1975)
11.E.Woermann and A.Muan,J.Inorg.Nucl.Chem,32[5]1457(1970)
12.See,e.g., N.W.Ashcroft and N.D.Mermin, Solid State Physics(Holt, Rinehart and Winston, New York, 1976).
13.M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1968).
14.Yang Wang, Yu Sui, Peng Ren ,etc al “Strongly Correlated Properties and Enhanced Thermoelectric Response in Ca3Co4-xMxO9 (M=Fe, Mn, and Cu)” Chem. Mater.(2010) 22, 1155–1163
15. B. Fisher, L. Patlagan, G. M. Reisner,etc al“Systematics in the thermopower of electron-doped layered manganites”
Phys.Rev. B (2000),61,470.
16.A.H. Harker physics and astronomy “Solid State Physics- free electron model”6.3.3 experimental results.
17.Luxiang Xu, Fang Li,etc al “High-temperature transport and thermoelectric properties of Ca3Co4−xTixO9”J.Alloys Compd. 501 (2010) 115–119
18.N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt Saunders, Philadelphia,PA,1976.
19.Yang Wang, Yu Sui, Jinguang Cheng,“Doping-Induced Metal -Insulator Transition and the Thermal Transport Properties in Ca3-xYxCo4O9”J. Phys. Chem.(2010) 114, 5174–5181
20.D.Li, X.Y.Qin, Y.J.Gu, “Electrical transport behavior of Ca3MnxCo4−xO9(0≦x≦1.28)at low temperatures”J.APPL. PHYS. 99, 053709 (2006)
21.B. C. Zhao, Y. P. Sun,etc al “Enhanced spin fluctuations in Ca3Co4−xTixO9 single crystals” PHYS.REV. B 74, 144417 (2006).
22.Mott,N.F.,Davis,E.A.,Electronic Processes in Non- Crystalline Materials (Oxford University Press ,Oxford , 1979).
23.Mott, N. F. Metal-Insulator Transitions(Taylor and Francis: London,1990).
24. R.R. Heikes and R.W. Ure, Jr., Thermoelectricity: Science and Engineering (Interscience Publishers, New York-London, 1961).
25.W. Koshibae, K. Tsutsui, and S. Maekawa,“Thermopower in cobalt oxides”, Phys. Rev. B 62, 6869 (2000).
26. W. Koshibae and S. Maekawa, Phys. Rev. Lett. 87, 236603 (2001).
27.G.D.Tang, Z.H.Wang,etc al“Evidence of spin-density-wave transition and enhanced thermoelectric properties in Ca3−xCexCo4O9+δ”J.APPL.PHYS. 107,053715 (2010)
28. P.M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).
29. A. Oguri and S. Maekawa, Phys. Rev. B 41, 6977 (1990)
30. D.B. Marsh and P.E. Parris, Phys. Rev. B 54, 7720 (1996);ibid.54, 16 602 (1996).
31. G. Pa´lsson and G. Kotliar, Phys. Rev.Lett. 80, 4775 (1998).
32. J. Merino and R.H. McKenzie, Phys. Rev. B 61, 7996 (2000).
33. P. H Joseph., C. M. Thrush, and T.M.Donald,“Thermopower enhancement in lead telluride nanostructures,”Physical review B, 70, 115334 (2004)
34. D. M. Rowe,“CRC Handbook of Thermoelectrics,” Ch7(Boca Raton, 1994)
35.Ryoji Asahi, Jun Sugiyama,etc al“Electronic structure of misfit-layered calcium cobaltite”PHYS. REV. B 66, 155103 (2002).
36.Chia-Jyi Liu, Li-Chen Huang,etc al“Improvement of the thermoelectric characteristics of Fe-doped misfit-layered Ca3Co4−xFexO9+δ(x=0,0.05,0.1,and0.2)” APPL. PHYS. LETT. 89,204102 (2006)
37.蔡豐欽,“熱傳遞,”高立圖書有限公司,1992
38.Jack P.Holman, “Heat Transfer,”McGraw-HillEducation,9th ed.,2002
39.施閔華“微奈米尺度薄膜熱傳現象之研究”國立中央大學機械工程學系 碩士論文(2003)
40.Tzou, D. Y., Macro-to Microscale Heat Transfer,Taylor and Franics,Washington, DC.,1996
41.劉貞秀 “熱傳導係數量測之研究”國立成功大學工程科學系 碩士論文(2008)
42.B.J.Filla, “A steady-state high temperature apparatus for measuring thermal conductivity of ceramics,”Rev.Sci.In. 68(1997) 2822-2829
43.S.E.Gusafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,”Rev.Sci.IN.62(1991)797-804
44. Hot DiskTM Thermal Constants Analyzer Model TPS 2500
45. M. Gustavsson, E. Karawacki, and S.E. Gustafsson, Rev. Sci.Instru., 65(12), 3856 (1994)
46. T. Log and S.E. Gustafsson, Fire and Materials,19(1),43(1995).
47.V. Bohac, M.K. Gustafsson, L. Kubicar, and S.E. Gustafsson, Rev. Sci. Instru., 71(6), 2452 (2000).
48.Hot Disk Thermal Constants Analyzer Instruction Manual, Mathis Instruments, Ltd., Fredericton, New Brunswick, Canada (2001).
49.Transient Plane Source-Gustafsson Hot Disk Technique,
standards for Contact Transient Measurements of Thermal Properties. National Physical Laboratory, United Kingdom, accessed February 2006
50. Y. He, Thermochimica Acta, 436, 122 (2005)
51.趙李益“氧化釔的添加對 Sr2FeMoO6 導電機構的影響”國立成功大學材料科學與工程學系 碩士論文(2009)
52.N.F. Mott, Conduction in Non-crystalline Materia,2nded. Chaps. 3 Oxford University Press, 1993
53. M. J. Burns and P.M. Chaikin,J.Phys.C 18,L743(1985)
54.N. F. Mott, Conduction in Non-Crystalline Materials, 2nd ed.(Oxford University Press, Oxford, 1993), Chap. 3.
55.Ichiro Matsubara, Ryoji Funahashi ,etc al“Thermoelectric
properties of spark plasma sintered Ca2.75Gd0.25Co4O9
ceramics,”J.APPL.PHYS. 90, 462 (2001).