簡易檢索 / 詳目顯示

研究生: 龔泰宇
Kung, Tai-Yu
論文名稱: 利用聲子晶體耦合表面聲波
Bloch surface wave excitaion via phononic crystal waveguide coupling
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 63
中文關鍵詞: 表面聲波聲子晶體耦合
外文關鍵詞: phononic crystal, surface wave
相關次數: 點閱:129下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲子晶體為兩種或兩種以上的材料經過週期性排列組合而成,由於其週期性關係對於波傳行為會產生頻隙現象,不論是固體中的應力波或是空氣的聲波皆會產生此現象。若將其週期性破壞會使結構形成缺陷,常見的缺陷有點缺陷以及線缺陷。點缺陷即為常見的聲子晶體共振腔,而聲子晶體波導即利用線缺陷形成。聲子晶體除了於頻隙現象已有大量討論之外,尚有在傳導區內擁有異常之頻散現象,如負折射特性,這些特性對於往後元件設計上能有更進一步的改良以及進步,因此使得該方面之研究成為最近學術界的熱門話題。
    本文首先利用平面波展開法以及有限元素法求得聲子晶體之色散曲線圖,進而結合超晶胞法得到聲子晶體波導之色散曲線圖以預測波導間的耦合現象,如能量完全傳遞之頻率、耦合長度等等。一般而言,當兩條波導在一定的距離之下,會產生耦合之現象,即兩條波導之間的距離接近到一定距離之內,模態便會互相影響。當波導結構與其表面波導結構進行耦合,會產生聲學表面波之現象,並藉由改變表面波導結構透過色散曲線之關係進而探討其不同表面波之性質。以往聲學表面波大部分用指叉電極結合壓電材料來激發,這樣的聲子晶體結構能夠為科技業帶來不一樣的思維。

    Phononic crystals are periodically composed of two or more materials, regardless of the elastic waves in solids or sound waves, band gap phenomenon are generated due to the cyclical relationship for the wave propagation. Destruction will make periodic structure to the defect formations, common defects are point defect and line defect. Point defect is the common phononic crystal resonant cavity, while the phononic crystal waveguide that is, the line defect. Phononic crystals have a lot of discussion to the frequency gap phenomenon. In addition, there has abnormal dispersion phenomenon in the propagation area, such as negative refraction characteristics of these features for further improvement and progress on the design of subsequent components. Thus, this aspect of the study becomes a hot topic of recent academia.
    Firstly, using the plane wave expansion method and finite element method to obtain phononic crystal dispersion curves, and then combined with the supercell method to get dispersion curve of phononic crystal waveguide to predict the coupling between the waveguide, such as energy pass, coupling length and so on. In general, the coupling phenomenon occurs when the two waveguides between certain distance. Namely, the distance between the two waveguides are close, the mode will affect each other. Coupling between waveguide structure and the surface of waveguide produced the acoustic surface wave phenomena, and discussing the relationship between surface waveguide structure and surface wave behavior. In the past, most of the acoustic surface wave excited by interdigital electrodes combined with piezoelectric material, via this novel phononic crystal structure would bring the different thinking for the technology industry.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 符號說明 IX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-2-1 聲子晶體 2 1-2-2 含缺陷聲子晶體 3 1-2-3 聲/光子晶體之耦合現象 3 1-3 本文架構 4 第二章 數值方法 6 2-1前言 6 2-2 倒晶格(Reciprocal lattice) 6 2-3 布拉克定理(Bloch’s theorem) 7 2-4 平面波展開法 8 2-5 有限元素法 11 2-6 耦合理論 14 第三章 聲子晶體波導耦合探討 21 3-1聲子晶體背景與填充物選用 21 3-2聲子晶體填充物內容之比較 21 3-3聲子晶體單一波導 22 3-4聲子晶體兩相同波導耦合 22 3-5聲子晶體兩不同波導耦合 23 第四章 聲子晶體波導耦合表面聲波 37 4-1指叉電極 37 4-1-1壓電效應 37 4-1-2指叉電極產生表面波 38 4-2週期結構之表面波 38 4-3同向表面波傳之耦合 38 4-3-1聲子晶體波導鋼柱大小之選取 38 4-3-2相位與耦合長度分析 39 4-4反向表面波傳之耦合 41 4-4-1聲子晶體波導鋼柱大小之選取 41 4-4-2相位與耦合長度分析 42 第五章 綜合結論與未來展望 57 5-1綜合結論 57 5-2未來展望 58 參考文獻 59

    [1] E. Yablonovitch, “Inhibited spontaneous emission in slid-state physics and electronics”, Phys. Rev. Lett. Vol. 58, No. 20, pp. 2059 (1987)
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattice”, Phys. Rev. Lett. Vol. 58, No. 23, pp. 2486 (1987)
    [3] L. Brillouin, “Wave propagation in periodic structure”, 2nded. Dover, New York (1953)
    [4] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B.Djafari-Rouhani, ‘Acoustic band structure of periodic elastic composites’, Phys. Rev. Lett. Vol. 71, No. 13, 2022 (1993)
    [5] M. S. Kushwaha, P. Halevi, ‘Band-gap engineering in periodic elastic composites’, Appl. Phys. Lett. Vol. 64, No.9, 1805 (1994)
    [6] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B.Djafari-Rouhani, ‘Theory of acoustic band structure of periodic elastic composites’, Phys. Rev. B. Vol. 49, No. 4, 2313 (1994)
    [7] M. S. Kushwaha, ‘Classical band structure of periodic elastic composites’, Internationa1 Journal of Modern Physics B Vol. 10, No. 9, 977 (1996)
    [8] M. S. Kushwaha, P. Halevi, ‘Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders’, Appl. Phys. Lett. Vol.69, No. 1, 31 (1996)
    [9] C. Goffaux and J. P. Vigneron, ‘Theoretical study of a tunable phononic band gap system’, Phys. Rev. B, Vol. 64, No. 7, 075118 (2001)
    [10] J. O. Vasseur, P. A. Deymier, A. Khelif, B. Djafrari-Rouhani, A. Akjouj, L. Dobrzynski, N. Fettouhi, and J. Zemmouri, ‘Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study’, Phys. Rev. E Vol.65, No. 5, 056608 (2002)
    [11] A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski, ‘Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency’, J. Appl. Phys. Vol. 94, No.3, 1308 (2003)
    [12] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, ‘Tunable filtering and demultiplexing in phononic crystals with hollow cylinders’, Phys. Rev. E Vol. 69, No.4, 046608 (2004)
    [13] W. Kuang, Z. Hou, and Y. Liu, ‘The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals’, Phys. Let. A Vol. 332, No. 6, 481 (2004)
    [14] X. Zhang, Y. Liu, F. Wu, and Z. Liu, ‘Large two-dimensional band gaps in three-component phononic crystals’, Phys. Let. A Vol. 317, No. 2 144 (2003)
    [15] M. Kafesaki, and E. N. Economou, ‘Multiple-scattering theory for three-dimensional periodic acoustic composites’, Phys. Rev. B Vol. 60, No. 17, 11993(1999)
    [16] Z. Hou, F. Wu, and Y. Liu, ‘Phononic crystals containing piezoelectric material’, Solid State Communications Vol. 130 , 745 (2004)
    [17] T. T. Wu, Z. G. Huang, and S. Lin, ‘Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy’, Phys. Rev. B Vol. 69, No. 9, 094301 (2004)
    [18] D. Torrent and J. Sánchez-Dehesa, “Radial wave crystals : Radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves”, Phys. Rew. Lett. Vol. 103, No. 6, pp. 064301 (2008)
    [19] D. Torrent and J. Sánchez-Dehesa, “Acoustic resonances in two-dimensional radial sonic crystal shells”, New J. Phys. Vol. 12, No. 7, pp. 073034 (2010)
    [20] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites”, J. Acoust. Soc. Am. Vol. 101, No. 3, pp. 1256 (1996)
    [21] M. M. Sigalas, “Defect states of acoustic waves in a two-dimensional lattice of solid cylinders”, J. Appl. Phys. Vol. 84, No. 6, pp. 3026 (1998)
    [22] F. Wu, Z. Hou, Z. Liu and Y. Liu, “Point defect states in two-dimensional phononic crystals”, Phys. Lett. A Vol. 292, No. 3, pp. 198 (2001)
    [23] F. Wu, Z. Liu, Y. Liu, “Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals”, Phys. Rev. E Vol. 69, No. 6, pp. 066609 (2004)
    [24] J. Chen, J. C. Cheng and B. Li, “Dynamics of elastic waves in two-dimensional phononic crystals with chaotic defect”, Appl. Phys. Lett. Vol. 91, No. 12, pp. 121902 (2007)
    [25] L. Y. Wu, L. W. Chen and C. M. Liu, “Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions”, Phys. Lett. A Vol. 373, No. 12-13, pp. 1189 (2009)
    [26] L. Y. Wu, L. W. Chen and C. M. Liu, “Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal”, Physica B Vol. 404, No. 12-13, pp. 1766 (2009)
    [27] L. Y. Wu, L. W. Chen and C. M. Liu, “Acoustic energy harvesting using resonant cavity of a sonic crystal”, Appl. Phys. Lett. Vol. 95, No. 1, pp. 013506 (2009)
    [28] L. Y. Wu and L. W. Chen, “Wave propergation in a 2D sonic crystal with a Helmholtz resonant defect”, J. Phys. D : Appl. Phys. Vol. 43, No. 5, pp. 055401 (2010)
    [29] X. Zhang, H. Dan, F. Wu and Z. Liu, “Point defect states in 2D acoustic band gap materials consisting of solid cylinders in viscous liquid”, J. Phys. D : Appl. Phys. Vol. 41, No. 15, pp. 155110 (2008)
    [30] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal”, Phys. Rev. B, Vol. 68, No. 21, pp. 214301 (2003)
    [31] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, and H. Larabi, “Acoustic channel drop tunneling in a phononic crystal”, Appl. Phys. Lett, Vol. 87, No. 26, pp. 261912 (2005)
    [32] J. H. Sun and T. T. Wu, “Analyses of mode coupling in joined parallel phononic crystal waveguides”, Phys. Rev. B, Vol. 71, No. 17, pp. 174303 (2005)
    [33] A. Martinez, F. Cuesta, and J. Marti, “Ultrashort 2-D Photonic Crystal Directional Couplers”, IEEE Photonics Technology Letters, Vol. 15, NO. 5 (2003)
    [34] Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based oncoupling from photonic crystal waveguide”, J. Opt, Vol. 12, 095709 (2010)
    [35] COMSOL Multiphysics User’s Guide and Modeling Guide
    [36] J. N. Reddy, An introduction to the finite element method 3rd ed. McGraw-Hill, New York (2006)
    [37] C. L. Chen, Foundations for guided-wave optics. Wiley-Interscience, A JOHN WILEY & SONS, INC., Publication
    [38] 蔡志偉, “表面聲波濾波器交指叉電極的參數萃取與時域特性量測”, 國立成功大學碩士論文,pp.2 (2004)
    [39] S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides”, Optics Express, Vol. 11, No. 13, pp. 1490 (2003)
    [40] B. Jiang, Y. Zhang, Y. Wang, A. Liu, and W. Zheng, ”Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode”, Applied Optics, Vol. 51, No. 13, pp. 132361(2012)

    下載圖示 校內:2014-08-03公開
    校外:2017-08-03公開
    QR CODE