| 研究生: |
李耕儒 Lee, Keng-Ju |
|---|---|
| 論文名稱: |
雙雷射脈衝混合機制進行質子加速優化 Proton Acceleration Optimization Using a Dual-Laser Pulse Hybrid Scheme |
| 指導教授: |
劉耀澧
Liu, Yao-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 雷射驅動質子加速 、雷射電漿交互作用 、電漿模擬 、混合加速 |
| 外文關鍵詞: | Laser-driven ion acceleration, Laser-plasma interaction, Particle-in-cell simulation, Hybrid acceleration |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在拓展Isayama博士等人利用混合加速方案使小型雷射驅動高能質子束的研究,藉由調整雷射脈衝強度、靶材密度與真空層大小等多項參數來提升質子加速效益達到混合加速的優化。此加速方案包含了輻射壓加速(Radiation Pressure Acceleration, RPA)、雷射尾場加速(Laser Wakefield Acceleration, LWFA)和靶後法向鞘場加速(Target Normal Sheath Acceleration, TNSA)。靶材設計為一個固態靶材(solid density ,SD)和一個近臨界密度靶材(near-critical density, NCD)組成,兩者中間有著真空層做間隔。第一道雷射打到SD靶材並產生質子與進行RPA階段加速。第二道雷射則是與前者產生的質子在NCD靶材進行LWFA與TNSA的階段加速。本論文中我們採用KPSI J-KAREN-P雷射與中央大學100兆瓦雷射系統的規格去進行二維模擬,經優化後分別產生能量為569.9 MeV與95.9 MeV的質子。我們同時也建立了一個簡易的理論模型,以利於簡單計算加速後的最終質子能量。模型計算與模擬比較結果顯示KPSI J-KAREN-P 雷射系統的誤差為2.3%,而中央大學一百兆瓦雷射的誤差為0.5%。我們也展示了改進雷射焦點後的結果,最終質子能量分別超過 1 GeV 和 100 MeV。由於高能質子束在癌症治療有極高的潛力,此論文也提供了利用桌上型雷射產生高能質子進行質子治療的可能性。
This thesis aims to expand the research of Dr. Isayama and others on using hybrid acceleration solutions to drive high-energy proton beams with small lasers. By adjusting multiple parameters such as laser pulse intensity, target density, and vacuum layer size, the proton acceleration efficiency can be improved to achieve hybrid accelerated optimization. This acceleration solution includes Radiation Pressure Acceleration (RPA), Laser Wakefield Acceleration (LWFA), and Target Normal Sheath Acceleration (TNSA). The target material is designed to consist of a solid density target (SD) and a near-critical density target (NCD), with a vacuum layer in between. The first laser hits the SD target generates protons and accelerates in the RPA stage. The second laser is used to accelerate the protons generated by the former in the LWFA and TNSA stages of the NCD target. In this thesis, we used the specifications of KPSI J-KAREN-P laser and NCU 100-TW laser systems to conduct two-dimensional simulations. After optimization, they produced protons with energies of 569.9 MeV and 95.9 MeV respectively. We also established a simple theoretical model to facilitate the simple calculation of the final proton energy after acceleration. The comparison results between model calculation and simulation show that the error of the KPSI J-KAREN-P laser system is 2.3%, while the error of the NCU 100-TW laser is 0.5%. We have also demonstrated the results after refining the laser focus, achieving final proton energies exceeding 1 GeV and 100 MeV, respectively. Since high-energy proton beams have great potential in cancer treatment, this thesis also provides the possibility of using desktop lasers to generate high-energy protons for proton therapy.
[1] Donna Strickland, Gerard Mourou. ‘Compression of amplified chirped optical pulses.’, Optics Communications, (1985).
[2] E. L. Clark, K. Krushelnick, J. R. Davies, M. Zepf, M. Tatarakis, F. N. Beg, A. Machacek, P. A. Norreys, M. I. K. Santala, I. Watts, and A. E. Dangor.Phys. ‘Measurements of Energetic Proton Transport through Magnetized Plasma from Intense Laser Interactions with Solids.’, Rev. Lett. 84, 670, (2000).
[3] R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell.Phys. ‘Intense High Energy Proton Beams from Petawatt-Laser Irradiation of Solids.’, Rev. Lett. 85, 2945, (2000).
[4] S. C. Wilks; A. B. Langdon; T. E. Cowan; M. Roth; M. Singh; S. Hatchett; M. H. Key; D. Pennington; A. MacKinnon; R. A. Snavely. ‘Energetic proton generation in ultra-intense laser–solid interactions.’, Phys. Plasmas 8, 542–549 , (2001).
[5] T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima. ‘Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime.’, Phys. Rev. Lett. 92, 175003, (2004).
[6] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva. ‘Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime.’, Phys. Rev. ST Accel. Beams 10, 061301, (2007).
[7] N.E. Andreev, V.S. Popov, O.N. Rosmej, A.A. Kuzmin, A.A. Shaykin, E.A. Khazanov, A.V. Kotov, N.G. Borisenko, M.V. Starodubtse5 and A.A. Soloviev.‘Efficiency improvement of the femtosecond laser source of super ponderomotive electrons and X-ray radiation due to the use of near-critical density targets.’, Quantum Electron. 51 1019, (2021).
[8] J. G. Moreau, E. d'Humières, R. Nuter, and V. T. Tikhonchuk. ‘Stimulated Raman scattering in the relativistic regime in near-critical plasmas.’, Phys. Rev. E 95, 013208, (2017).
[9] B Qiao, X F Shen, H He, Y Xie, H Zhang, C T Zhou, S P Zhu and X T He. ‘Revisit on ion acceleration mechanisms in solid targets driven by intense laser pulses.’, Plasma Phys. Control. Fusion 61 014039, (2019).
[10] Wen-shuai Zhang, Hong-bo Cai, Liu-lei Wei, Jian-min Tian and Shao-ping Zhu.‘Enhanced ion acceleration in the ultra-intense laser driven magnetized collisionless shocks.’, New J. Phys. 21 043026, (2019).
[11] Nishihara, K., Amitani, H., Murakami, M., Bulanov, S. V., & Esirkepov, T. Z. ‘High energy ions generated by laser driven Coulomb explosion of cluster.’, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 464(1-3), 98-102, (2001).
[12] YIN L, ALBRIGHT BJ, HEGELICH BM, FERNÁNDEZ JC. ‘GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner.’, Laser and Particle Beams.24(2):291-298, (2006).
[13] S. Isayama, S. H. Chen, Y. L. Liu, H. W. Chen, Y. Kuramitsu. ‘Efficient hybrid acceleration scheme for generating 100 MeV protons with tabletop dual-laser pulses.’, Phys. Plasmas, (2021).
[14] Andrea Macchi, Silvia Veghini, and Francesco Pegoraro. ‘“Light Sail” Acceleration Reexamined.’, Phys. Rev. Lett. 103, 085003, (2009).
[15] Andrea Macchi, Silvia Veghini, Tatyana V Liseykina and Francesco Pegoraro. ‘Radiation pressure acceleration of ultrathin foils.’, New Journal of Physics 12, (2010).
[16] Y. F. Li, X. F. Shen, Y. L. Yao, S. Z. Wu, A. Pukhov, and B. Qiao. ‘Laser-driven time-limited light-sail acceleration of protons for tumor radiotherapy.’, Phys. Rev. Research 5, L012038, (2023).
[17] S. M. Weng, P. Mulser, Z. M. Sheng; ‘Relativistic critical density increase and relaxation and high‐power pulse propagation.’, Phys. Plasmas 1, (2012).
[18] J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, ‘Laser-Driven Proton Scaling Laws and New Paths Towards Energy Increase.’, Nature Physics 2, (2005).
[19] P. Mora, ‘Plasma Expansion into a Vacuum.’, Phys. Rev. Lett. 90, 185002 – Published 7 May, (2003).
[20] Hiromitsu Kiriyama, Alexander S. Pirozhkov, Mamiko Nishiuchi, Yuji Fukuda, Koichi Ogura, Akito Sagisaka, Yasuhiro Miyasaka, Michiaki Mori, Hironao Sakaki, Nicholas P. Dover, Kotaro Kondo, James K. Koga, Timur Zh. Esirkepov, Masaki Kando, and Kiminori Kondo, ‘High-contrast high-intensity repetitive petawatt laser.’, Opt. Lett. 43, 2595-2598, (2018).
[21] Tatsufumi Nakamura, Sergei V. Bulanov, Timur Zh. Esirkepov, and Masaki Kando. ‘High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration.’, Phys. Rev. Lett. 105, 135002, (2010).
[22] Tazes, I., Passalidis, S., Kaselouris, E. et al. ‘Efficient Magnetic Vortex Acceleration by femtosecond laser interaction with long living optically shaped gas targets in the near critical density plasma regime.’, Sci Rep 14, 4945, (2024).
[23] I Prencipe, A Sgattoni, D Dellasega, L Fedeli, L Cialfi, Il Woo Choi, I Jong Kim, K A Janulewicz, K F Kakolee, Hwang Woon Lee, Jae Hee Sung, Seong Ku Lee, Chang Hee Nam and M Passoni, ‘Development of foam-based layered targets for laser-driven ion beam production.’, Plasma Physics and Controlled Fusion, Volume 58, Number 3, (2016).
[24] Bubo Ma, Jieru Ren, Lirong Liu, Wenqing Wei, Benzheng Chen, Shizheng Zhang, Hao Xu, Zhongmin Hu, Fangfang Li et al. ‘Charge equilibration of laser accelerated carbon ions in a porous-structure foam target.’, Phys. Rev. A 109, (2024).
校內:2030-07-30公開