簡易檢索 / 詳目顯示

研究生: 楊曙宇
Yang, Shu-Yu
論文名稱: 添加Al2O3與Ca0.7Nd0.2TiO3陶瓷填充料對Ca-B-Si玻璃系統之介電與共燒行為影響之研究
Effects of the addition of alumina and Ca0.7Nd0.2TiO3 ceramic fillers on the dielectric properties and cofiring behavior of Ca-B-Si glass
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 低溫共燒介電玻璃+陶瓷Ca0.7Nd0.2TiO3CaO-B2O3-SiO2
外文關鍵詞: low temperature co-fired ceramics, glass+ceramic, Ca0.7Nd0.2TiO3, CaO-B2O3-SiO2
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年射頻元件不斷往高頻化、模組化趨勢發展,由於低溫共燒陶瓷可在低溫時與具高導電度之內電極(Ag,Cu)共燒,同時具有較高之Q 值,並可多層化,而被廣泛使用於各類無線通訊零組件中。本研究利用Al2O3及Ca0.7Nd0.2TiO3 (CNT)陶瓷粉末填充於(CaO-B2O3-SiO2)玻璃系統來製作低、中介電材料,並選擇將微波性能較佳之低、中介電材料堆疊進行共燒,來製作小型且薄型化之射頻元件及模組,以達到元件微小化與多功能化的需求。透過改變玻璃添加量與燒結溫度,觀察顯微結構、二次相對介電性質之影響與共燒之相容性。實驗結果顯示玻璃系統分別加入50 wt%之Ca0.7Nd0.2TiO3與Al2O3於900 oC燒結可達緻密,且分別促使兩者生成二次相sphene與 anorthite,有助於品質因子的提升,K值分別為 22和7。當兩者以刮刀成型技術製成薄帶後進行堆疊及共燒,顯示具有極佳之熱收縮匹配性及化學相容性。

    With the rapid development of the RF components toward smaller size, higher frequency, low-temperature-cofired ceramics (LTCC) are in great demand as the main components for wireless application. The CaO-B2O3-SiO2 (CBS) glass addition effects on the sintering behavior and dielectric properties of Al2O3 and Ca0.7Nd0.2TiO3 ceramics were investigated to develop low-K and middle-K LTCC in this study. Moreover, bilayer and sandwiched laminates were prepared by stacking low-K and middle-K green tapes to reduce the size of components. The results indicate that CBS glass can be used as a sintering aid to reduce the sintering temperature of CNT and Al2O3. The CBS glass added Al2O3 and Ca0.7Nd0.2TiO3 ceramics sintered at 900oC exhibited high relative density and dielectric constants of 7 and 22, respectively, which provides a promising candidate for LTCC applications. The secondary phases, CaTiSiO5 and CaAl2Si2O8, can improve the quality factors of CBS glass added Ca0.7Nd0.2TiO3 and Al2O3 ceramics. Bilayer and sandwiched laminates prepared by stacking low-K and middle-K green tapes after sintering exhibited excellent volume and chemical compatibility, suggesting that the shrinkage mismatch and interfacial reaction between low-K and middle-K LTCC during co-firing can be minimized by using the same CBS glass system.

    摘要 Ⅰ 誌謝 Ⅷ 目錄 X 表目錄 XⅣ 圖目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究方向與目的 1 第二章 前人研究與理論基礎 3 2-1 玻璃系統與結構 3 2-1-1 玻璃結構 3 2-1-2 玻璃系統 7 2-1-2-1 矽酸鹽玻璃 7 2-1-2-2 硼酸鹽玻璃 8 2-1-2-3 硼矽酸鹽玻璃 9 2-2 介電微波陶瓷材料及其低溫共燒技術 12 2-2-1 Ca1-xLn2x/3TiO3高介電微波陶瓷 13 2-3 介電性質 14 2-3-1 介電極化 14 2-3-2 品質因子 17 2-4 燒結 18 2-4-1 固相燒結 18 2-4-2 黏性燒結 18 2-5 陶瓷基板材料 21 2-5-1 低溫共燒陶瓷 21 2-5-2 玻璃陶瓷基板系統 23 2-6 漿料 23 2-6-1 溶劑 23 2-6-2 分散劑 24 2-6-3 黏結劑 24 2-6-4 塑化劑 24 第三章 實驗方法及步驟 25 3-1 粉體備製 25 3-1-1 玻璃粉體的備製 25 3-1-2 高介電陶瓷粉體(CNT): 26 3-1-3 玻璃加陶瓷(CNT/Al2O3)粉體: 26 3-1-4 燒結體製備 26 3-2 材料特性分析 26 3-2-1 粉末之熱重/熱差分析 26 3-2-2 結構分析 26 3-2-3 燒結收縮曲線 27 3-2-4 密度量測 27 3-2-5 相鑑定 27 3-2-6 顯微結構觀察 28 3-2-7 微波性質量測 28 3-3 低溫陶瓷基板 28 3-3-1 低溫陶瓷基板之製程 28 3-3-2 薄帶層形貌觀察 29 第四章 結果與討論 31 4-1 Ca0.7Nd0.2TiO3 陶瓷塊材研究 31 4-1-1 結晶相分析 31 4-1-2 燒結行為與顯微形貌特徵 32 4-1-3 微波介電特性 33 4-2 CBS玻璃之研究 34 4-2-1 玻璃結構分析 34 4-2-2 玻璃性質分析 39 4-3 Ca0.7Nd0.2TiO3 /Al2O3 陶瓷+玻璃之低溫燒結塊材研究 41 4-3-1 Ca0.7Nd0.2TiO3+玻璃之相結構分析 41 4-3-1-1 玻璃配比 41 4-3-1-2 燒結溫度 43 4-3-1-3 二次相生成 46 4-3-2 Al2O3 +玻璃之相結構分析 48 4-3-2-1 玻璃配比 48 4-3-2-2 燒結溫度 50 4-3-3 燒結行為 52 4-3-3-1 Ca0.7Nd0.2TiO3/ Al2O3+玻璃之燒結行為 52 4-3-4 Ca0.7Nd0.2TiO3/Al2O3+玻璃顯微形貌特徵 57 4-3-4-1 Ca0.7Nd0.2TiO3+玻璃之顯微形貌特徵 57 4-3-4-2 Al2O3 +玻璃之顯微形貌特徵 58 4-3-5 微波介電性質 61 4-3-5-1 Ca0.7Nd0.2TiO3/ Al2O3+玻璃之微波介電常數 61 4-3-5-2 Ca0.7Nd0.2TiO3/Al2O3 +玻璃之品質因子 63 4-4 Ca0.7Nd0.2TiO3 /Al2O3 陶瓷+玻璃之低溫共燒基板研究. 64 4-4-1 陶瓷+玻璃之收縮測試 64 4-4-2 陶瓷共燒研究 67 第五章 結論 71 參考文獻 72

    [1]Y. J Choi, "Co‐Firing and Shrinkage Matching in Low‐and Middle‐Permittivity Dielectric Compositions for a Low‐Temperature Co‐Fired Ceramics System." Journal of the American Ceramic Society 89.2 (2006): 562-567.
    [2]T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, R. E. Newnham, "Effects of glass additions on (Zr, Sn) TiO4 for microwave applications." Journal of the American Ceramic Society 77.9 (1994): 2485-2488.
    [3]T. Takada, S. F Wang, S. Yoshikawa. S. J. Jang, R. E. Newnham, "Effect of glass additions on BaO–TiO2–WO3 microwave ceramics." Journal of the American Ceramic Society 77.7 (1994): 1909-1916.
    [4]B. C. Steele, ed. Electronic ceramics. Springer Science & Business Media, 1991.
    [5]J. Takahashi, K. Kageyama1 and T. Hayashi, "Dielectric properties of double-oxide ceramics in the system Ln2O3-TiO2 (Ln= La, Nd and Sm)." Japanese Journal of Applied Physics 30.9S (1991): 2354.
    [6]Y. J. Choi, "Co-Firing of Low-and Middle-Permittivity Dielectric Tapes of Fabricating Low-Temperature Co-Fired Ceramics." Korean Journal of Materials Research 14.10 (2004): 731-736.
    [7]Y. J. Choi, "Co‐Firing and Shrinkage Matching in Low‐and Middle‐Permittivity Dielectric Compositions for a Low‐Temperature Co‐Fired Ceramics System." Journal of the American Ceramic Society 89.2 (2006): 562-567.
    [8]R. Ubic, I.M. Reaney, W.E Lee, "Microwave dielectric solid–solution phase in system BaO–Ln203–Ti02 (Ln= lanthanide cation)." International Materials Reviews 43.5 (1998): 205-219.
    [9]J. C. Phillips, "Realization of a Zachariasen glass." Solid State Communications 47.3 (1983): 203-206.
    [10]J. E. Shelby, Introduction to glass science and technology. Royal Society of Chemistry, (2005).
    [11]W. Vogel, Glass chemistry. Springer Science & Business Media, (2012).
    [12]A. K. Varshneya, Fundamentals of inorganic glasses. Elsevier, (2013).
    [13]M. Juliana, ed. "Biocompatible Glasses: From Bone Regeneration to Cancer Treatment." Vol. 53. Springer, (2016).
    [14]R. A. Smith, "Boron in glass and glass making." Journal of Non-Crystalline solids 84.1-3 (1986): 421-432.
    [15]E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, "Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure." Journal of Physical Chemistry 91.5 (1987): 1073-1079.
    [16]R. A. Lange, "A revised model for the density and thermal expansivity of K 2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K: Extension to crustal magmatic temperatures." Contributions to Mineralogy and Petrology 130.1 (1997): 1-11.
    [17]M. T. Sebastian, Dielectric materials for wireless communication. Elsevier, (2010)
    [18]W. J. Dell, P. J. Bray, and S. Z. Xiao, "11B NMR studies and structural modeling of Na2O-B2O3-SiO2 glasses of high soda content." Journal of Non-Crystalline Solids 58.1 (1983): 1-16.
    [19]R. Farrella, T. Goshalb, U. Cvelbarc, N. Petkovd, M. A. Morrisb, "Advances in ultra low dielectric constant ordered porous materials." The Electrochemical Society Interface 20.4 (2011): 39-46.
    [20]Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology. Springer Science & Business Media, (2005).
    [21]S. G. Mhaisalkar, D. W. Readey, S. A. Akbar, "Microwave dielectric properties of doped BaTi4O9." Journal of the American Ceramic Society 74.8 (1991): 1894-1898.
    [22]H. Zhou,"Microwave Dielectric Properties of BaTi5O11 Ceramics Prepared by Reaction‐Sintering Process with the Addition of CuO." Journal of the American Ceramic Society 91.10 (2008): 3444-3447.
    [23]H. M. O'bryan, J. Thomson, and J. K. Plourde. "A New BaO‐TiO2 Compound with Temperature‐Stable High Permittivity and Low Microwave Loss." Journal of the American Ceramic Society 57.10 (1974): 450-453.
    [24]S. F Wang, "Effects of additives on the microstructure and dielectric properties of Ba2Ti9O20 microwave ceramic." Journal of Materials Research 18.05 (2003): 1179-1187.
    [25]H. Ohsato, M. Imaeda, "The quality factor of the microwave dielectric materials based on the crystal structure—as an example: the Ba6−3xR8+2xTi18O54 (R=rare earth) solid solutions." Materials Chemistry and Physics 79.2 (2003): 208-212.
    [26]H. Ohsato, "Science of tungstenbronze-type like Ba6−3xR8+2xTi18O54 (R= rare earth) microwave dielectric solid solutions." Journal of the European Ceramic Society 21.15 (2001): 2703-2711.
    [27]D. Kolar, "High stability, low loss dielectrics in the system BaO-Nd2O3-TiO2-Bi2O5." Ferroelectrics 27.1 (1980): 269-272.
    [28]H. Ohsato, H. Kato, M. Mizuta, S. Nishigaki, "Microwave Dielectric Properties of the Ba6-3x (Sm 1-y, mbRy) 8+ 2xTi 18O 54 ( mbR= Nd and La) Solid Solutions with Zero Temperature Coefficient of the Resonant Frequency." Japanese Journal of Applied Physics 34.9S (1995): 5413.
    [29]V. Sivasubramanian, V. R. K. Murthy and B. Viswanathan,"Microwave dielectric properties of certain simple alkaline earth perovskite compounds as a function of tolerance factor. " Japanese journal of applied physics 36.1R (1997): 194.
    [30]K. Yoshihiro, "Novel dielectric waveguide components-microwave applications of new ceramic materials." Proceedings of the IEEE 79.6 (1991): 726-740.
    [31]M. S. Fu, X. Q. Liu, and X. M. Chen, "Structure and microwave dielectric characteristics of Ca1− xNd2x/3TiO3 ceramics." Journal of the European Ceramic Society 28.3 (2008): 585-590.
    [32]J. Petzelt, "Dielectric spectra of some ceramics for microwave applications in the range of 1010–1014 Hz." Ferroelectrics 93.1 (1989): 77-85.
    [33]M. Yoshida, N. Hara, T. Takada and A. Seki, "Structure and dielectric properties of (Ca1-xNd2x/3) TiO3." Japanese journal of applied physics 36.11R (1997): 6818.
    [34]W. S Kim, E. S Kim, and K. H Yoon, "Effects of Sm3+ substitution on dielectric properties of Ca1−xSm2x/3TiO3 ceramics at microwave frequencies." Journal of the American Ceramic Society 82.8 (1999): 2111-2115.
    [35]M. Abe, and K. Uchino, "X-ray study of the deficient perovskite La23TiO3." Materials Research Bulletin 9.2 (1974): 147-155.
    [36]R. Lowndes, Structural and microwave dielectric properties of ceramics of Ca (1-x) Nd2x/3TiOs. Diss. University of Manchester, (2012).
    [37]W. D. Kingery, Introduction to ceramics. (1960).
    [38]Basics of Measuring the Dielectric Properties of Materials Application Note,Agilent, www.agilent.com/find/materials, (2005).
    [39]A. Kumar, S. Sharma, G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies." Progress In Electromagnetics Research 69 (2007): 47-54.
    [40]B. W. Hakki, and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range." IRE Transactions on Microwave Theory and Techniques 8.4 (1960): 402-410.
    [41]M. Prakasam, J. Locs, "Fabrication, properties and applications of dense hydroxyapatite: A review." Journal of Functional Biomaterials 6.4 (2015): 1099-1140.
    [42]M. Randall, "Fundamentals of sintering." ASM International, Engineered Materials Handbook. 4 (1991): 260-269.
    [43]J. Luo, "The Development and Biocompatibility of Low Temperature Co-Fired Ceramic (LTCC) for Microfluidic and Biosensor Applications." (2014):28-30.
    [44]G. W. Scherer, "Viscous Sintering of a Bimodal Pore‐Size Distribution." Journal of the American Ceramic Society 67.11 (1984): 709-715.
    [45]S. Sridharan, and M. Tomozawa, "Effect of various oxide additives on sintering of BaO-SiO2 system glass-ceramics." Journal of materials science 27.24(1992): 6747-6754.
    [46]G. W. Scherer, "Viscous Sintering of a Bimodal Pore‐Size Distribution." Journal of the American Ceramic Society 67.11 (1984): 709-715.
    [47]G. W. Scherer, "Sintering of Low-Density Glasses .1. Theory," Journal of the American Ceramic Society, 60 (1977):236-239.
    [48]G. W. Scherer and D. L. Bachman, "Sintering of Low-Density Glasses .2. Experimental-Study," Journal of the American Ceramic Society, 60 (1977):239-243.
    [49]E. M. Rabinovich, "Preparation of Glass by Sintering," Journal of Materials Science, 20 (1985): 4259-4297.
    [50]J. K. Mackenzie and R. Shuttleworth, "A Phenomenological Theory of Sintering," Proceedings of the Physical Society. Section B, 62 (1949):833-852.
    [51]R. R. Tummala, "Ceramic and Glass‐Ceramic Packaging in the 1990s." Journal of the American Ceramic Society 74.5 (1991): 895-908.
    [52]S. H Knickerbocker, A. H. Kumar, and L.W. Herron, "Cordierite glass-ceramics for multilayer ceramic packaging." American Ceramic Society Bulletin 72.1 (1993): 90-95.
    [53]A. H. Kumar, P. W. McMillan, and R. R. Tummala, "Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper." U.S. Patent No. 4,301,324. 17 Nov. (1981).
    [54]M. Eberstein, and W. A. Schiller, "Development of high-permittivity glasses for microwave LTCC tapes." Glass science and technology 76.1 (2003): 8-16.
    [55]H. Zhou, X. Chen, L. Fang, D. Chu, "A new low-loss microwave dielectric ceramic for low temperature cofired ceramic applications." Journal of Materials Research 25.07 (2010): 1235-1238.
    [56]K. G. Ewsuk, "Ceramic-Filled-Glass Composite Sintering," Ceramic Transaction Materials Processes Microelectronic System, 15 (1989): 279-295.
    [57]K. G. Ewsuk, L. W. Harrision, and F. J. Walczak, "Sintering Glass-Filled Ceramic Composites; Effects of Glass Properties," Ceramic Transaction Ceramic Powder Science II, 1 (1987): 967-975.
    [58]J. H Jean, and T. K. Gupta, "Liquid-phase sintering in the glass-cordierite system." Journal of Materials Science 27.6 (1992): 4967-4973.
    [59]F. F. Lange, "Fracture Energy and Strength Behavior of a Sodium Borosilicate Glass‐Al2O3 Composite System." Journal of the American Ceramic Society 54.12 (1971): 614-620.
    [60]Y. Imanaka, "Crystallization of low-temperature-fired glass/ceramic composite." J. CERAM. SOC. JAP. J. Ceram. Soc. Jap. 95.11 (1987): 1119-1121.
    [61]葉信賢,基層陶瓷可靠度技術,工業材料雜誌,192期,(2002):144-152.
    [62]D. Cooper, P. G. Newland and F. W. Shapley, “The development of High-Quality Alumina Substrates”, in High Tech Ceramics. Edited by P. Vincenzini. Elsevier, Amsterdam, Netherlands (1987) :1549-1554.
    [63]E. P. Hyatt, “Making Thin, Flat Ceramics: A Review”, Am. Ceram.Soc. Bull.,65[4] (1986): 637-638.
    [64]J. S. Reed, “Introduction to the Principles of Ceramic Processing”, John Wiley & Sons, New York, (1989):227-252.
    [65]R. W. Cahn, P. Haasen, E. J. Kramer, “Materials Science and Technology”, volume 17A, Processing of Ceramics, Weinheim, New York (1996).
    [66]D. J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworth-Heinemann (1992).
    [67]A. P. Howes, "Boron environments in Pyrex® glass—a high resolution, Double-Rotation NMR and thermodynamic modelling study." Physical Chemistry Chemical Physics 13.25 (2011): 11919-11928.
    [68]J. Wu, Composition and temperature effects on aluminoborosilicate glasses structure and properties. Stanford University, (2011).
    [69]L. S. Du, and J. F. Stebbins. "Network connectivity in aluminoborosilicate glasses: A high-resolution 11B,27Al and17O NMR study." Journal of Non-Crystalline Solids 351.43 (2005): 3508-3520.
    [70]J. Han, "Structure and crystallization behavior of Al containing glasses in the CaO–B2O3–SiO2 system." RSC Advances 7.24 (2017): 14709-14715.
    [71]B. C. Bunker, R.J Kirkpatrick, R. K. Brow, G. L. Turner, C. Nelson"Local Structure of Alkaline‐Earth Boroaluminate Crystals and Glasses: II, 11B and 27Al MAS NMR Spectroscopy of Alkaline‐Earth Boroaluminate Glasses." Journal of the American Ceramic Society 74.6 (1991): 1430-1438.
    [72]B. C. Bunker, R. J. Kirkpatrick, and R. K. Brow. "Local Structure of Alkaline‐Earth Boroaluminate Crystals and Glasses: I, Crystal Chemical Concepts—Structural Predictions and Comparisons to Known Crystal Structures." Journal of the American Ceramic Society 74.6 (1991): 1425-1429.
    [73]S. H. Risbud, R. J. Kirkpatrick, A. P. Taglialavore, B. Montez "Solid‐state NMR Evidence of 4‐, 5, and 6‐Fold Aluminum Sites in Roller‐Quenched SiO2‐A12O3 Glasses." Journal of the American Ceramic Society 70.1 (1987).
    [74]Y. Fujimoto, M. Nakatsuka, "27Al NMR structural study on aluminum coordination state in bismuth doped silica glass." Journal of non-crystalline solids 352.21 (2006): 2254-2258.
    [75]G. Tricot, A. Saitoh, H. Takebe, "Intermediate length scale organisation in tin borophosphate glasses: new insights from high field correlation NMR." Physical Chemistry Chemical Physics 17.44 (2015): 29531-29540.
    [76]Y. Imanaka, K. Yamazaki, "Effects of alumina addition on crystallization of borosilicate glass." Journal of the Ceramic Society of Japan 97.1123 (1989): 309-313.
    [77]A. Gebert, J. Eckert, L. Schultz, "Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass." Acta materialia 46.15 (1998): 5475-5482.
    [78]E. S Lim, B. S. Kim, J. H. Lee, J. J. Kim, "Effect of BaO content on the sintering and physical properties of BaO–B2O3–SiO2 glasses." Journal of Non-Crystalline Solids 352.8 (2006): 821-826.
    [79]B. S. Kim, E. S. Lim, J. H. Lee, J. J. Kim, "Effect of Bi2O3 content on sintering and crystallization behavior of low-temperature firing Bi2O3–B2O3–SiO2 glasses." Journal of the European Ceramic Society 27.2 (2007): 819-824.
    [80]Y. J. Choi, J. H. Park, J. H. Park, J. G. Park, "Middle-permittivity LTCC dielectric compositions with adjustable temperature coefficient." Materials Letters 58.25 (2004): 3102-3106.
    [81]K. L. Ngai, and C. T. White. "Frequency dependence of dielectric loss in condensed matter." Physical Review B 20.6 (1979): 2475.
    [82]R. K. Bordia, E. Olevsky, "Advances in sintering science and technology." Ceramic Transactions 209 (2009):307-308.
    [83]C. L. Lo, J. G. Duh, B. S. Chiou, "Low temperature sintering and crystallisation behaviour of low loss anorthite-based glass-ceramics." Journal of Materials Science 38.4 (2003): 693-698.
    [84]T. J. Garino, H. K. Bowen, "Kinetics of Constrained‐Film Sintering." Journal of the American Ceramic Society 73.2 (1990): 251-257.
    [85]P. Z. Cai, D. J. Green, G. L. Messing, "Constrained densification of alumina/zirconia hybrid laminates, I: experimental observations of processing defects." Journal of the American Ceramic Society 80.8 (1997): 1929-1939.
    [86]P. Z. Cai, D. J. Green, G. L. Messing, "Constrained densification of alumina/zirconia hybrid laminates, II: viscoelastic stress computation." Journal of the American Ceramic Society 80.8 (1997): 1940-1948.
    [87]T. Cheng, R. Raj, "Flaw Generation During Constrained Sintering of Metal‐Ceramic and Metal–Glass Multilayer Films." Journal of the American Ceramic Society 72.9 (1989): 1649-1655.
    [88]R. K. Bordia, A. Jagota, "Crack growth and damage in constrained sintering films." Journal of the American Ceramic Society 76.10 (1993): 2475-2485.
    [89]J. C. Chang, and J. H. Jean, "Camber Development During the Cofiring of Bi‐Layer Glass‐Based Dielectric Laminate." Journal of the American Ceramic Society 88.5 (2005): 1165-1170.
    [90]H. M. Cho, H. J. Kim, C. S. Lee, K. S. Bang, "Warpage of Co-fired High K/Low K LTCC Substrate." Journal of the Microelectronics and Packaging Society 11.3 (2004): 77-82.
    [91]H. I. Hsiang, C. S. Hsi, C. C. Huang, S. L. Fu, "Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC." Journal of Alloys and Compounds 459.1 (2008): 307-310.
    [92]Q. L. Zhang, H. Yang, J. L. Zou, H. P. Wang, "Sintering and microwave dielectric properties of LTCC-zinc titanate multilayers." Materials Letters 59.8 (2005): 880-884.
    [93]K. Y. Lim, D. H. Kim, U. Paik, S. H. Kim, "Effect of the molecular weight of poly (ethylene glycol) on the plasticization of green sheets composed of ultrafine BaTiO 3 particles and poly(vinyl butyral)." Materials Research Bulletin 38.6 (2003): 1021-1032.
    [94]D. H. Yoon, B. I. Lee, "Processing of barium titanate tapes with different binders for MLCC applications—Part II: Comparison of the properties." Journal of the European Ceramic Society 24.5 (2004): 753-761.
    [95]嚴蓉,戴雷,曹常勝,低溫共燒陶瓷翹曲度改進工藝研究,固體電子學研究與進展,2014
    [96]Z. Park, D. Yeo, H. Shin, "Effect of Ca–Al–Si–O common glass on dielectric properties of low-temperature co-fired ceramic materials with different fillers." Biotechnology & Biotechnological Equipment 28.sup1 (2014): S1-S5.
    [97]H. Li, L. Wu, D. Xu, X. Wang, Y. Teng, Y. Li, "Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases." Journal of Nuclear Materials 466 (2015): 484-490.
    [98]D. C. Lago, M. O. Prado, "Dehydroxilation and crystallization of glasses: A DTA study." Journal of Non-Crystalline Solids 381 (2013): 12-16.

    無法下載圖示 校內:2022-07-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE