簡易檢索 / 詳目顯示

研究生: 傅俞閔
Fu, Yu-Min
論文名稱: 以二進位排名法探討分離泡於有限高圓柱之臨界轉換區現象
The binary method for the finite circular cylinder research on the critical transition phenomenon of the separation bubble
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 172
中文關鍵詞: 有限高圓柱臨界轉換區二進位排名法風洞實驗
外文關鍵詞: finite cylinder, critical transition region, wind tunnel experiment, binary ranking method
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流場流經有限高圓柱表面之三維流場現象為學者探究之目標,有限高圓柱雖然形狀簡單但其形成之流場三維結構卻極為複雜,由於分離泡存在使流場於不同雷諾數區間產生不同現象,若於光滑圓柱加上粗糙度則能使整體現象於較低雷諾數時發生。
    本研究主要目標為以二進位排名法將光滑與粗糙圓柱表面之分離泡分佈進行統計。首先,判別壓力孔訊號是否有分離泡生成,將有分離泡之狀態設定為1,無分離泡則為0,再將所有壓力孔蒐集到之0與1訊號以二進位方式統合,將其數值進一步進行排名分析,藉此得知分離泡於臨界轉換區之流場分佈情況與出現機率,其結果可充分說明分離泡於臨界轉換區之間歇性、非對稱性,非同步性,同時,此方式能描述瞬時分離泡之分布結構,藉此觀察高寬比2-4之分離泡分佈變化。隨後於圓柱表面套上布料,測量圓柱於有粗糙度下之流場差異,與分離泡非定常現象,探討粗糙度對有限高圓柱流場,於臨界轉換區對分離泡之影響。

    The three-dimensional structure of the flow field on a finite-height circular cylinder is extremely complex, while its simple shape. Under critical transition conditions, the generation of separation bubbles causes different phenomena in the flow field at different Reynolds numbers. Adding roughness to a smooth cylinder can induce these phenomena at lower Reynolds numbers, and the location of the separation bubbles can also be different.
    The primary objective of this study is to statistically analyze the distribution of separation bubbles on the surfaces of smooth and rough finite-height circular cylinders by using a binary ranking method. Firstly, we determine whether the pressure signals have separation bubbles or not, and set the state of having separation bubbles as 1 and no separation bubbles as 0. Then we combine all the 0 and 1 signals in a binary way, and analyze the values in a ranked way. The results can illustrate the intermittent, asymmetric, and asynchronous nature of the separation bubble in the critical transition region on the circular cylinder with aspect ratio of 2-4. This method describes the distribution structure of the instantaneous separation bubbles, and we observe the changes in the distribution of the separation bubbles on the surface of a cylinder with an aspect ratio of 2-4.
    After that, we put a fabric on the surface of the cylinder and measure the flow field difference and the non-stationary phenomenon of the separation bubbles under the roughness of the cylinder to investigate the effect of roughness on the flow field of a finite height cylinder on the generation of separation bubbles under the critical transition condition.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 符號索引 XXVIII 第一章 前言 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 無限高圓柱之流場 3 1.2.2 有限高圓柱之流場 8 1.2.3 表面粗糙度對圓柱流場之影響 14 1.2.4 二進位概念 16 第二章 實驗設備與模型 18 2.1 實驗風洞 18 2.2 皮托管 19 2.3 電阻溫度檢測器(RTD) 20 2.4 手提式壓力校正器 20 2.5 壓力轉換器 21 2.6 資料擷取系統 22 2.7 實驗用模型 23 2.7.1 布料與雷射掃描共軛交光譜顯微鏡 23 2.7.2 有限高圓柱模型 25 2.7.3 圓柱模型之壓力孔位置 25 2.7.4 圓柱模型之座標定義 27 第三章 實驗方法與訊號分析 28 3.1 空風洞流場不均勻度量測 28 3.2 圓柱表面壓力訊號量測 29 3.3 實驗參數分析 30 3.3.1 雷諾數(Reynolds number) 30 3.3.2 壓力係數 30 3.3.3 布料表面粗糙度參數 31 3.4 訊號分析 32 3.4.1 二進位數值排名 32 3.4.2 偏度 45 第四章 結果與討論 47 4.1 空流場均勻度量測結果 47 4.2 高寬比2、3、4粗糙圓柱之壓力實驗結果 51 4.2.1 高寬比4之粗糙圓柱壓力訊號結果 51 4.2.2 高寬比3之粗糙圓柱壓力訊號結果 67 4.2.3 高寬比2之粗糙圓柱壓力訊號結果 80 4.3 光滑圓柱高寬比2、3、4之排名實驗結果 94 4.3.1 光滑圓柱高寬比4之偏度訊號對比油膜現象結果 94 4.3.2 光滑圓柱高寬比4之二進位排名結果 96 4.3.3 光滑圓柱高寬比3偏度訊號對比油膜現象結果 103 4.3.4 光滑圓柱高寬比3之二進位排名結果 105 4.3.5 光滑圓柱高寬比2偏度訊號對比油膜現象結果 110 4.3.6 光滑圓柱高寬比2之二進位排名結果 111 4.4 粗糙圓柱高寬比2、3、4之排名實驗結果 117 4.4.1 粗糙圓柱高寬比4之偏度訊號量測結果 117 4.4.2 粗糙圓柱高寬4之排名結果 120 4.4.3 光滑與粗糙圓柱高寬比4之分離泡生成圖 124 4.4.4 粗糙圓柱高寬比3之偏度訊號量測結果 129 4.4.5 粗糙圓柱高寬3之排名結果 131 4.4.6 光滑與粗糙圓柱高寬比3之分離泡生成圖 136 4.4.7 粗糙圓柱高寬比2之偏度訊號量測結果 141 4.4.8 粗糙圓柱高寬2之排名結果 143 4.4.9 光滑與粗糙圓柱高寬比2之分離泡生成圖 148 第五章 結論與未來建議 153 5.1 結論 153 5.2 未來建議 154 參考文獻 156 附錄A – 高寬比4之粗糙圓柱瞬時訊號配合閥值 160 附錄B – 高寬比3之粗糙圓柱瞬時訊號配合閥值 165 附錄C – 高寬比2之粗糙圓柱瞬時訊號配合閥值 169

    [1] A. Fage and J. Warsap, "The effects of turbulence and surface roughness on the drag of a cylinder," HM Stationery Office, 1929.
    [2] 蔡佳樺, "有限高圓柱表面流場於臨界雷諾數之特性研究," Institute of aeronautics and astronautics, Nattional Cheng Kung University, Taiwan, 2018.
    [3] 蔡明哲, "臨界轉換區非定常分離泡於有限高圓柱之特性研究 ", Institute of aeronautics and astronautics, Nattional Cheng Kung University, Taiwan, 2021.
    [4] 莊光庭, "高寬比對有限高圓柱於臨界轉換區非定常分離泡特性之影響," Institute of aeronautics and astronautics, Nattional Cheng Kung University, Taiwan, 2022.
    [5] T. Von Karman, "Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 1911, pp. 509-517, 1911.
    [6] G. Taylor, "Pressure distribution round a cylinder," Advisory Committee of Aeronautics, vol.191, 1916.
    [7] C. Wieselsberger, "Further information on the laws of fluid resistance," 1922.
    [8] A. Roshko, "Experiments on the flow past a circular cylinder at very high Reynolds number," Journal of fluid mechanics, vol. 10, no. 3, pp. 345-356, 1961.
    [9] E. Achenbach, "Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re= 5× 106," Journal of fluid Mechanics, vol. 34, no. 4, pp. 625-639, 1968.
    [10] M. Zdravkovich, "Conceptual overview of laminar and turbulent flows past smooth and rough circular cylinders," Journal of wind engineering and industrial aerodynamics, vol. 33, no. 1-2, pp. 53-62, 1990.
    [11] T. ADACHI, K. MATsUUcHI, S. MATSUDA, and T. KAWAI, "On the force and vortex shedding on a circular cylinder from subcritical up to transcritical Reynolds numbers," Bulletin of JSME, vol. 28, no. 243, pp. 1906-1909, 1985.
    [12] C. Farell and J. Blessmann, "On critical flow around smooth circular cylinders," Journal of Fluid Mechanics, vol. 136, pp. 375-391, 1983.
    [13] P. W. Bearman, "On vortex shedding from a circular cylinder in the critical Reynolds number regime," Journal of Fluid Mechanics, vol. 37, no. 3, pp. 577-585, 1969.
    [14] L. Ericsson, "Karman vortex shedding and the effect of body motion," AIAA Journal, vol. 18, no. 8, pp. 935-944, 1980.
    [15] D. Almosnino and K. W. McAlister, Water-tunnel study of transition flow around circular cylinders. National Aeronautics and Space Administration, Scientific and Technical …, 1984.
    [16] A. Capone, C. Klein, F. Di Felice, and M. Miozzi, "Phenomenology of a flow around a circular cylinder at sub-critical and critical Reynolds numbers," Physics of Fluids, vol. 28, no. 7, 2016.
    [17] E. Szechenyi, "Supercritical Reynolds number simulation for two-dimensional flow over circular cylinders," Journal of Fluid Mechanics, vol. 70, no. 3, pp. 529-542, 1975.
    [18] G. Schewe, "Sensitivity of transition phenomena to small perturbations in flow round a circular cylinder," Journal of fluid mechanics, vol. 172, pp. 33-46, 1986.
    [19] R. Basu, "Aerodynamic forces on structures of circular cross-section. Part 1. Model-scale data obtained under two-dimensional conditions in low-turbulence streams," Journal of Wind Engineering and Industrial Aerodynamics, vol. 21, no. 3, pp. 273-294, 1985.
    [20] A. Uranga, "Investigation of transition to turbulence at low Reynolds numbers using Implicit Large Eddy Simulations with a Discontinuous Galerkin method," University of California, Berkeley, 2010.
    [21] E. A. a. E. Heinecke, "On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6×103 to 5×106," Journal of fluid mechanics, vol. vol. 109, pp. 239-251, 1980.
    [22] G. Schewe, "On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers," Journal of fluid mechanics, vol. 133, pp. 265-285, 1983.
    [23] S. Zan and K. Matsuda, "Steady and unsteady loading on a roughened circular cylinder at Reynolds numbers up to 900,000," Journal of Wind Engineering and Industrial Aerodynamics, vol. 90, no. 4-5, pp. 567-581, 2002.
    [24] J. S. Humphreys, "On a circular cylinder in a steady wind at transition Reynolds numbers," Journal of Fluid Mechanics, vol. 9, no. 4, pp. 603-612, 1960.
    [25] J. Miau, H. Tsai, Y. Lin, J. Tu, C. Fang, and M. Chen, "Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime," Experiments in fluids, vol. 51, pp. 949-967, 2011.
    [26] Y.-J. Lin, J.-J. Miau, J.-K. Tu, and H.-W. Tsai, "Nonstationary, three-dimensional aspects of flow around circular cylinder at critical Reynolds numbers," AIAA journal, vol. 49, no. 9, pp. 1857-1870, 2011.
    [27] D. J. Farivar, "Turbulent uniform flow around cylinders of finite length.," AIAA journal, pp. 19(3), 275-281., 1981.
    [28] A. Ayoub and K. Karamcheti, "An experiment on the flow past a finite circular cylinder at high subcritical and supercritical Reynolds numbers," Journal of Fluid Mechanics, vol. 118, pp. 1-26, 1982.
    [29] D. Sumner, "Flow above the free end of a surface-mounted finite-height circular cylinder: A review," Journal of Fluids and Structures, vol. 43, pp. 41-63, 2013.
    [30] M. Adaramola, O. Akinlade, D. Sumner, D. Bergstrom, and A. Schenstead, "Turbulent wake of a finite circular cylinder of small aspect ratio," Journal of Fluids and Structures, vol. 22, no. 6-7, pp. 919-928, 2006.
    [31] N. Rostamy, D. Sumner, D. Bergstrom, and J. Bugg, "Local flow field of a surface-mounted finite circular cylinder," Journal of Fluids and Structures, vol. 34, pp. 105-122, 2012.
    [32] S. Okamoto and Y. Sunabashiri, "Vortex shedding from a circular cylinder of finite length placed on a ground plane," 1992.
    [33] T. Kawamura, M. Hiwada, T. Hibino, I. Mabuchi, and M. Kumada, "Flow around a finite circular cylinder on a flat plate: Cylinder height greater than turbulent boundary layer thickness," Bulletin of JSME, vol. 27, no. 232, pp. 2142-2151, 1984.
    [34] D. Sumner, J. Heseltine, and O. Dansereau, "Wake structure of a finite circular cylinder of small aspect ratio," Experiments in Fluids, vol. 37, pp. 720-730, 2004.
    [35] F. Baban, R. So, and M. Ötügen, "Unsteady forces on circular cylinders in a cross-flow," Experiments in Fluids, vol. 7, pp. 293-302, 1989.
    [36] F. Baban and R. So, "Aspect ratio effect on flow-induced forces on circular cylinders in a cross-flow," Experiments in Fluids, vol. 10, no. 6, pp. 313-321, 1991.
    [37] N. Hölscher and H.-J. Niemann, "Turbulence and separation induced pressure fluctuations on a finite circular cylinder—application of a linear unsteady strip theory," Journal of wind engineering and industrial aerodynamics, vol. 65, no. 1-3, pp. 335-346, 1996.
    [38] C. Baker, "The laminar horseshoe vortex," Journal of fluid mechanics, vol. 95, no. 2, pp. 347-367, 1979.
    [39] J. L. Helman and L. Hesselink, "Visualizing vector field topology in fluid flows," IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 36-46, 1991.
    [40] W. A. Eckerle and L. Langston, "Horseshoe vortex formation around a cylinder," 1987.
    [41] W. Eckerle and L. Langston, "Horseshoe vortex formation around a cylinder," in Turbo Expo: Power for Land, Sea, and Air, 1986, vol. 79283: American Society of Mechanical Engineers, p. V001T01A109.
    [42] G. Buresti, "The effect of surface roughness on the flow regime around circular cylinders," Journal of wind engineering and industrial Aerodynamics, vol. 8, no. 1-2, pp. 105-114, 1981.
    [43] J. Nikuradse, "Laws of flow in rough pipes," 1950.
    [44] A. Desai and S. Mittal, "Effect of free stream turbulence on the topology of laminar separation bubble on a sphere," Journal of Fluid Mechanics, vol. 948, p. A28, 2022.
    [45] R. Deshpande, V. Kanti, A. Desai, and S. Mittal, "Intermittency of laminar separation bubble on a sphere during drag crisis," Journal of Fluid Mechanics, vol. 812, pp. 815-840, 2017.
    [46] D. Zhang, L. Cheng, H. An, and S. Draper, "Flow around a surface-mounted finite circular cylinder completely submerged within the bottom boundary layer," European Journal of Mechanics-B/Fluids, vol. 86, pp. 169-197, 2021.
    [47] A. Norman and B. McKeon, "Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers," Experiments in fluids, vol. 51, no. 5, pp. 1439-1453, 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE