| 研究生: |
黃立中 Huang, Li-Chung |
|---|---|
| 論文名稱: |
治療頑固型思覺失調症患者認知功能、臨床症狀及合併治療與谷胺酸(glutamate)濃度變化之相關研究 Cognitive function, symptoms severity and the augmentation therapy are associated with glutamatergic variations in the patients of treatment resistant schizophrenia |
| 指導教授: |
楊延光
Yang, Yen-Kuang 江伯敏 Chiang, Po-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 治療頑固型思覺失調症 、谷胺酸神經傳導物質分布 、功能性核磁共振 、認知功 能 、sodium benzoate (苯甲酸鈉) |
| 外文關鍵詞: | treatment resistant schizophrenia, glutamatergic distribution, 1-H MRS, cognition function, sodium benzoate |
| 相關次數: | 點閱:127 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
背景:
治療頑固型思覺失調症(treatment resistant schizophrenia,TRS)的定義為對大多數藥物反應不佳的思覺失調症,這些病人常伴隨認知退化及精神症狀惡化。多巴胺假說可以解釋大部分思覺失調症的病理及藥物作用機轉,但無法解釋藥物治療後頑固型思覺失調症之持續症狀惡化,而glutamate (谷胺酸)可能是詮釋治療頑固型的思覺失調症的機轉之一。Sodium benzoate(苯甲酸鈉)作用在D-amino acid oxidase inhibitors上是目前被嘗試用來治療治療頑固型思覺失調症的合併藥物之一。其機轉是在調整anterior cingulate cortex(前扣帶迴,ACC) 和medial prefrontal cortex (中前額葉,MPFC)的谷胺酸濃度,也可能由此進一步改善認知功能及臨床症狀。本研究的目的有四,目的一: 探討治療頑固型思覺失調症之glutamate是否異常?及glutamate與認知功能及臨床症狀之關係;目的二: 檢定sodium benzoate治療頑固型思覺失調症合併原有抗精神病藥物治療療效;考量到偵測腦中glutamate濃度的替代方法進行兩個研究;目的三:分析腦中glutamate濃度與周邊血液glutamate濃度的相關及目的四:分析治療頑固型思覺失調症的ACC谷胺酸濃度與ACC與其它腦區的功能性連結之相關。
方法:
本研究分為橫斷性及介入性兩部分進行多年期的試驗,第一部分收集38位頑固型思覺失調症病人、35位非頑固型思覺失調症病人及19位健康受試者。分析三組在認知功能、臨床症狀及在腦部谷胺酸濃度的差異性及彼此之間的相關性,同時收集病人之ACC對於其他腦區的功能性連結。第二部分試驗招募12位治療頑固型思覺失調症病患以2:1的比例隨機雙盲持續給予苯甲酸鈉每日2g或安慰劑六個週,原本服用的藥物不變。並於未給藥(sodium benzoate)前、給藥後2週及給藥後6週重測認知功能、臨床症狀及核磁共振檢測腦部谷胺酸濃度;。第二部分目前已完成6週藥物研究者為8人,安慰劑組為4人。
結果:
橫斷性研究顯示治療頑固型思覺失調症患者ACC的谷胺酸(Glx/NAAx)濃度比非治療頑固型思覺失調症患者高;非治療頑固型思覺失調症患者Glx/NAAx濃度在前扣帶迴和工作記憶呈負相關的關聯性,同樣的狀態並沒有在頑固型思覺失調症患者和健康組被觀察到。週邊血液的谷胺酸濃度無法推估腦部谷胺酸濃度,但是ACC對於其他腦區的功能性連結可以成為腦中谷胺酸濃度推估替代方法。第二部分結果顯示服用藥物組病人呈現臨床症狀 (PANSS),正性及負性症狀的改善。
總結:
病人腦中之 ACC 的谷胺酸濃度可能是思覺失調症的亞型分類方式之一; sodium benzoate的合併療法在治療頑固型思覺失調症具療效。TRS 患者的谷胺酸和工作記憶 (working memory index, WMI)的關聯可能為預測疾病發展的分類因子。以周邊血液glutamate濃度推估腦中glutamate (谷胺酸)濃度的替代方法並未成功。 ACC對於其它腦區的功能性連結可能是預測腦中glutamate (谷胺酸)濃度方法之一。
關鍵詞:治療頑固型思覺失調症,谷胺酸神經傳導物質分布,功能性核磁共振,認知功能,sodium benzoate (苯甲酸鈉)
Abstract
Backgrounds:
Treatment-resistant schizophrenia (TRS) is a drug-refractory subtype of schizophrenia in which cognitive function gradually declines and clinical symptoms worsen. The dopaminergic hypothesis is a plausible neurochemical model of schizophrenia; however, it cannot adequately explain the occurrence of TRS. Other neurotransmitters, such as glutamatergic metabolites, have also been found to be involved in the pathophysiology of TRS. Sodium benzoate, a D-amino acid oxidase inhibitor (DAAO inhibitor), is considered an effective glutamatergic modulator for add-on therapy of schizophrenia and TRS. It works by modulating glutamate levels in the anterior cingulate cortex (ACC) and medial prefrontal cortex (MPFC), which may in turn improve cognitive function and clinical symptoms. There are four aims of the study: Aim 1: To explore the differences in glutamatergic levels between schizophrenia subgroups and the association between glutamatergic concentration and cognition and clinical symptoms. Aim 2: To examine the efficacy of sodium benzoate as an add-on therapy for TRS. Aim 3: To analyse the correlation between peripheral plasma glutamate and brain glutamate levels using magnetic resonance spectroscopy (MRS). Aim 4: To detect the association between brain glutamate levels and functional connectivity between brain regions in TRS, by using anterior cingulate cortex (ACC) as seed region.
Methods:
The study was divided into two parts: (1) a cross-sectional study; and (2) an interventional study. In the first part (Study 1) 38 treatment-resistant schizophrenia (TRS) patients, 35 treatment responsive schizophrenia patients (non-TRS), and 19 healthy controls each for both TRS and non-TRS groups were recruited. The differences among the subgroups were compared. The functional connectivity between brain regions was also analysed by ACC-seeding. In the second part (Study 2), 12 TRS patients were randomly and double blindly divided into two groups with a 2:1 (sodium benzoate 2 g/day: placebo) ratio. This augmentation treatment study was performed for 6 weeks. The observation time points were at baseline, 2 weeks, and 6 weeks after augmentations. We measured cognitive function, symptom changes, and glutamate levels using the MRS.
Results:
In the cross-sectional study, patients with TRS showed higher Glx/NAAx levels in the ACC than the non-TRS patients and healthy controls. The working memory index (WMI) was negatively associated with Glx/NAAx in the ACC areas only in non-TRS patients, while any such association was not found in TRS patients and healthy controls. The plasma glutamatergic concentration was not associated with brain glutamate levels measured by MRS; however, some tracts of the ACC seeded functional connectivity were correlated with glutamate levels in the ACC. In the Study 2, improvements in the total PANSS (the Positive and Negative Symptoms Scale) score were noted in the active treatment arm.
Conclusion:
Our findings indicate that glutamatergic levels in the ACC could be a potential marker for subtyping of TRS and non-TRS. Sodium benzoate add-on therapy may be a potentially effective treatment for TRS. The associations between glutamatergic complex levels and WMI might lead to the development of novel of predictor or classification biomarkers for TRS patients. This study also reported that alternative method for determination of peripheral glutamatergic levels used in this research is not efficient and reliable. Some tracts of functional connectivity seeded from the ACC to other brain regions might be predictors of ACC glutamatergic concentrations in MRS.
Key words: treatment resistant schizophrenia; glutamatergic distribution; 1-H MRS; cognition function; sodium benzoate.
1. Gillespie AL, Samanaite R, Mill J, Egerton A, MacCabe JH. Is treatment-resistant schizophrenia categorically distinct from treatment-responsive schizophrenia? A systematic review. BMC psychiatry 2017;17(1):1-14.
2. Lang F, Koesters M, Lang S, Becker T, Jaeger M. Psychopathological long‐term outcome of schizophrenia–a review. Acta Psychiatrica Scandinavica 2013;127(3):173-182.
3. Helfer B, Samara MT, Huhn M, Klupp E, Leucht C, Zhu Y, Engel RR, Leucht S. Efficacy and safety of antidepressants added to antipsychotics for schizophrenia: a systematic review and meta-analysis. American Journal of Psychiatry 2016;173(9):876-886.
4. Elkis H, Buckley PF. Treatment-resistant schizophrenia. Psychiatric Clinics 2016;39(2):239-265.
5. Howes OD, McCutcheon R, Agid O, et al. Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. American Journal of Psychiatry 2017;174(3):216-229.
6. Guy W. ECDEU assessment manual for psychopharmacology: US Department of Health, Education, and Welfare, Public Health Service …; 1976.
7. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophrenia bulletin 2009;35(3):549-562.
8. Frydecka D, Beszłej JA, Gościmski P, Kiejna A, Misiak B. Profiling cognitive impairment in treatment-resistant schizophrenia patients. Psychiatry research 2016;235:133-138.
9. Samara MT, Dold M, Gianatsi M, Nikolakopoulou A, Helfer B, Salanti G, Leucht S. Efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia: a network meta-analysis. JAMA psychiatry 2016;73(3):199-210.
10. Kim E, Howes OD, Veronese M, et al. Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: an [18F] DOPA PET study. Neuropsychopharmacology 2017;42(4):941-950.
11. McCutcheon RA, Marques TR, Howes OD. Schizophrenia—an overview. JAMA psychiatry 2020;77(2):201-210.
12. Egerton A, Murphy A, Donocik J, et al. Dopamine and glutamate in antipsychotic-responsive compared with antipsychotic-nonresponsive psychosis: a multicenter positron emission tomography and magnetic resonance spectroscopy study (STRATA). Schizophrenia bulletin 2021;47(2):505-516.
13. Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: neurodevelopmental perspectives and drug development. Schizophrenia Research 2020;223:59-70.
14. Huang L-C, Lin S-H, Tseng H-H, Chen KC, Yang YK. The integrated model of glutamate and dopamine hypothesis for schizophrenia: Prediction and personalized medicine for prevent potential treatment-resistant patients. Medical Hypotheses 2020;143:110159.
15. Lowe P, Krivoy A, Porffy L, Henriksdottir E, Eromona W, Shergill SS. When the drugs don’t work: treatment-resistant schizophrenia, serotonin and serendipity. Therapeutic advances in psychopharmacology 2018;8(1):63-70.
16. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. The American journal of psychiatry 1991.
17. Lane H-Y, Huang C-L, Wu P-L, Liu Y-C, Chang Y-C, Lin P-Y, Chen P-W, Tsai G. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biological psychiatry 2006;60(6):645-649.
18. Seese RR, O'Neill J, Hudkins M, Siddarth P, Levitt J, Tseng B, Wu KN, Caplan R. Proton magnetic resonance spectroscopy and thought disorder in childhood schizophrenia. Schizophrenia research 2011;133(1-3):82-90.
19. Madeira C, Alheira FV, Calcia MA, et al. Blood levels of glutamate and glutamine in recent onset and chronic schizophrenia. Frontiers in psychiatry 2018;9:713.
20. Seetharam JC, Maiti R, Mishra A, Mishra BR. Efficacy and safety of add-on sodium benzoate, a D-amino acid oxidase inhibitor, in treatment of schizophrenia: A systematic review and meta-analysis. Asian Journal of Psychiatry 2022;68:102947.
21. Cusa BV, Klepac N, Jakšic N, Bradaš Z, Božicevic M, Palac N, Šagud M. The effects of electroconvulsive therapy augmentation of antipsychotic treatment on cognitive functions in patients with treatment-resistant schizophrenia. The journal of ECT 2018;34(1):31-34.
22. Hasan A, Strube W, Palm U, Wobrock T. Repetitive noninvasive brain stimulation to modulate cognitive functions in schizophrenia: a systematic review of primary and secondary outcomes. Schizophrenia bulletin 2016;42(suppl_1):S95-S109.
23. Fernandes JM, Cajão R, Lopes R, Jerónimo R, Barahona-Corrêa JB. Social cognition in schizophrenia and autism spectrum disorders: a systematic review and meta-analysis of direct comparisons. Frontiers in psychiatry 2018;9:504.
24. Forbes N, Carrick L, McIntosh A, Lawrie S. Working memory in schizophrenia: a meta-analysis. Psychological medicine 2009;39(6):889-905.
25. Guo J, Ragland JD, Carter CS. Memory and cognition in schizophrenia. Molecular psychiatry 2019;24(5):633-642.
26. White T, Schmidt M, Karatekin C. Verbal and visuospatial working memory development and deficits in children and adolescents with schizophrenia. Early intervention in psychiatry 2010;4(4):305-313.
27. Anderson VM, McIlwain ME, Kydd RR, Russell BR. Does cognitive impairment in treatment-resistant and ultra-treatment-resistant schizophrenia differ from that in treatment responders? Psychiatry research 2015;230(3):811-818.
28. Meltzer HY, Share DB, Jayathilake K, Salomon RM, Lee MA. Lurasidone improves psychopathology and cognition in treatment-resistant schizophrenia. Journal of clinical psychopharmacology 2020;40(3):240.
29. Syeda WT, Wannan CM, Merritt AH, et al. Cortico-cognition coupling in treatment resistant schizophrenia. NeuroImage: Clinical 2022;35:103064.
30. Li Z, Zhu M, Liu Z, et al. Amisulpride Augmentation Therapy Improves Cognitive Performance and Psychopathology in Clozapine-resistant Treatment-refractory Schizophrenia (CTRS): a 12-week Randomized, Double-blind, Placebo-controlled Trial. 2022.
31. Huang J, Zhu Y, Fan F, et al. Hippocampus and cognitive domain deficits in treatment-resistant schizophrenia: A comparison with matched treatment-responsive patients and healthy controls. Psychiatry Research: Neuroimaging 2020;297:111043.
32. Reddy-Thootkur M, Kraguljac NV, Lahti AC. The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders–A systematic review of magnetic resonance spectroscopy studies. Schizophrenia research 2020.
33. Ivanova SA, Boyko A, Fedorenko OY, Krotenko N, Semke A, Bokhan N. Glutamate concentration in the serum of patients with schizophrenia. Procedia Chemistry 2014;10:80-85.
34. Krivoy A, Hochman E, Sendt K-V, Hollander S, Vilner Y, Selakovic M, Weizman A, Taler M. Association between serum levels of glutamate and neurotrophic factors and response to clozapine treatment. Schizophrenia Research 2018;192:226-231.
35. Song J, Viggiano A, Monda M, De Luca V. Peripheral glutamate levels in schizophrenia: evidence from a meta-analysis. Neuropsychobiology 2014;70(3):133-141.
36. Kim J, Kornhuber H, Schmid-Burgk W, Holzmüller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neuroscience letters 1980;20(3):379-382.
37. Faustman WO, Bardgett M, Faull KF, Pfefferbaum A, Csernansky JG. Cerebrospinal fluid glutamate inversely correlates with positive symptom severity in unmedicated male schizophrenic/schizoaffective patients. Biological psychiatry 1999;45(1):68-75.
38. Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, Iyo M. Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC psychiatry 2005;5(1):1-5.
39. León-Ortiz P, Favila R, Stephano S, Mamo D, Ramírez-Bermúdez J, Graff-Guerrero A. Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis. Neuropsychopharmacology 2011;36(9):1781-1791.
40. Reid MA, Stoeckel LE, White DM, et al. Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia. Biological psychiatry 2010;68(7):625-633.
41. Rowland LM, Kontson K, West J, Edden RA, Zhu H, Wijtenburg SA, Holcomb HH, Barker PB. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophrenia bulletin 2013;39(5):1096-1104.
42. Rüsch N, van Elst LT, Valerius G, Büchert M, Thiel T, Ebert D, Hennig J, Olbrich H-M. Neurochemical and structural correlates of executive dysfunction in schizophrenia. Schizophrenia research 2008;99(1-3):155-163.
43. Shirayama Y, Obata T, Matsuzawa D, et al. Specific metabolites in the medial prefrontal cortex are associated with the neurocognitive deficits in schizophrenia: a preliminary study. Neuroimage 2010;49(3):2783-2790.
44. Lin C-H, Yang H-T, Chen P-K, Wang S-H, Lane H-Y. Precision medicine of sodium benzoate for the treatment of behavioral and psychological symptoms of dementia (BPSD). Neuropsychiatric Disease and Treatment 2020;16:509.
45. Lin C-H, Chen Y-M, Lane H-Y. Novel treatment for the most resistant schizophrenia: dual activation of NMDA receptor and antioxidant. Current Drug Targets 2020;21(6):610-615.
46. Lin C-H, Lane H-Y. Early identification and intervention of schizophrenia: insight from hypotheses of glutamate dysfunction and oxidative stress. Frontiers in psychiatry 2019;10:93.
47. Lin C-H, Lin C-H, Chang Y-C, Huang Y-J, Chen P-W, Yang H-T, Lane H-Y. Sodium benzoate, a D-amino acid oxidase inhibitor, added to clozapine for the treatment of schizophrenia: a randomized, double-blind, placebo-controlled trial. Biological psychiatry 2018;84(6):422-432.
48. Plavén-Sigray P, Matheson GJ, Collste K, et al. Positron emission tomography studies of the glial cell marker translocator protein in patients with psychosis: a meta-analysis using individual participant data. Biological psychiatry 2018;84(6):433-442.
49. Huang L-C, Lin S-H, Tseng H-H, Chen KC, Abdullah M, Yang YK. Altered glutamate level and its association with working memory among patients with treatment-resistant schizophrenia (TRS): a proton magnetic resonance spectroscopy study. Psychological Medicine 2022:1-8.
50. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020;19(1):15-33.
51. Hawkins RA. The blood-brain barrier and glutamate. The American journal of clinical nutrition 2009;90(3):867S-874S.
52. Madeira C, Alheira FV, Calcia MA, et al. Blood levels of glutamate and glutamine in recent onset and chronic schizophrenia. Frontiers in psychiatry 2018:713.
53. Shulman Y, Grant S, Seres P, Hanstock C, Baker G, Tibbo P. The relation between peripheral and central glutamate and glutamine in healthy male volunteers. Journal of Psychiatry and Neuroscience 2006;31(6):406-410.
54. Inoshita M, Umehara H, Watanabe S-y, et al. Elevated peripheral blood glutamate levels in major depressive disorder. Neuropsychiatric disease and treatment 2018;14:945.
55. Shimmura C, Suda S, Tsuchiya KJ, et al. Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PloS one 2011;6(10):e25340.
56. Chai WJ, Abd Hamid AI, Abdullah JM. Working memory from the psychological and neurosciences perspectives: a review. Frontiers in psychology 2018;9:401.
57. Ashkenazi S, Rosenberg-Lee M, Metcalfe AW, Swigart AG, Menon V. Visuo–spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia 2013;51(11):2305-2317.
58. Balderston NL, Vytal KE, O'Connell K, Torrisi S, Letkiewicz A, Ernst M, Grillon C. Anxiety patients show reduced working memory related dlPFC activation during safety and threat. Depression and anxiety 2017;34(1):25-36.
59. Stegmayer K, Usher J, Trost S, Henseler I, Tost H, Rietschel M, Falkai P, Gruber O. Disturbed cortico–amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. European archives of psychiatry and clinical neuroscience 2015;265(4):303-311.
60. Pillinger T, Rogdaki M, McCutcheon RA, Hathway P, Egerton A, Howes OD. Altered glutamatergic response and functional connectivity in treatment resistant schizophrenia: the effect of riluzole and therapeutic implications. Psychopharmacology 2019;236(7):1985-1997.
61. Shukla DK, Wijtenburg SA, Chen H, Chiappelli JJ, Kochunov P, Hong LE, Rowland LM. Anterior cingulate glutamate and GABA associations on functional connectivity in schizophrenia. Schizophrenia bulletin 2019;45(3):647-658.
62. McQueen G, Lay A, Lally J, et al. Effect of single dose N-acetylcysteine administration on resting state functional connectivity in schizophrenia. Psychopharmacology 2020;237(2):443-451.
63. Wijtenburg SA, Wright SN, Korenic SA, et al. Altered glutamate and regional cerebral blood flow levels in schizophrenia: a 1H-MRS and pCASL study. Neuropsychopharmacology 2017;42(2):562-571.
64. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Frontiers in systems neuroscience 2010:19.
65. Lang S, Duncan N, Northoff G. Resting-state functional magnetic resonance imaging: review of neurosurgical applications. Neurosurgery 2014;74(5):453-465.
66. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biological psychiatry 2006;59(10):929-939.
67. Lord L-D, Allen P, Expert P, et al. Characterization of the anterior cingulate's role in the at-risk mental state using graph theory. Neuroimage 2011;56(3):1531-1539.
68. Alonso-Solís A, Vives-Gilabert Y, Grasa E, et al. Resting-state functional connectivity alterations in the default network of schizophrenia patients with persistent auditory verbal hallucinations. Schizophrenia research 2015;161(2-3):261-268.
69. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia bulletin 1987;13(2):261-276.
70. Lichtenberger EO, Kaufman AS. Essentials of WAIS-IV assessment. Vol 96: John Wiley & Sons; 2012.
71. Conners CK. Conners' continuous performance test: Multi-Health Systems North Tonawanda NY; 2000.
72. Heaton R. Wisconsin Card Sorting Test—Computer Version 4—Research Edition—“English”. 4.21. San Antonio, TX: Psychological Corporation 2005.
73. Ende G, Cackowski S, Van Eijk J, et al. Impulsivity and aggression in female BPD and ADHD patients: association with ACC glutamate and GABA concentrations. Neuropsychopharmacology 2016;41(2):410-418.
74. Milak MS, Proper CJ, Mulhern ST, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Molecular psychiatry 2016;21(3):320-327.
75. Mouchlianitis E, Bloomfield MA, Law V, et al. Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive. Schizophrenia bulletin 2016;42(3):744-752.
76. Tarumi R, Tsugawa S, Noda Y, et al. Levels of glutamatergic neurometabolites in patients with severe treatment-resistant schizophrenia: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology 2020;45(4):632-640.
77. Shah P, Plitman E, Iwata Y, et al. Glutamatergic neurometabolites and cortical thickness in treatment-resistant schizophrenia: Implications for glutamate-mediated excitotoxicity. Journal of Psychiatric Research 2020;124:151-158.
78. Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric disease and treatment 2006;2(4):531.
79. Thomas EH, Bozaoglu K, Rossell SL, Gurvich C. The influence of the glutamatergic system on cognition in schizophrenia: a systematic review. Neuroscience & Biobehavioral Reviews 2017;77:369-387.
80. Barch DM, Ceaser A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends in cognitive sciences 2012;16(1):27-34.
81. Tanaka S. Dopaminergic control of working memory and its relevance to schizophrenia: a circuit dynamics perspective. Neuroscience 2006;139(1):153-171.
82. Arnsten AF, Girgis RR, Gray DL, Mailman RB. Novel dopamine therapeutics for cognitive deficits in schizophrenia. Biological psychiatry 2017;81(1):67-77.
83. Gallinat J, McMahon K, Kühn S, Schubert F, Schaefer M. Cross-sectional study of glutamate in the anterior cingulate and hippocampus in schizophrenia. Schizophrenia bulletin 2016;42(2):425-433.
84. Lin C-H, Hashimoto K, Lane H-Y. glutamate-related biomarkers for neuropsychiatric disorders. Frontiers in Psychiatry 2019:904.
85. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. Journal of psychopharmacology 2015;29(2):97-115.
86. Hutcheson NL, Reid MA, White DM, et al. Multimodal analysis of the hippocampus in schizophrenia using proton magnetic resonance spectroscopy and functional magnetic resonance imaging. Schizophrenia research 2012;140(1-3):136-142.
87. Lenartowicz A, McIntosh AR. The role of anterior cingulate cortex in working memory is shaped by functional connectivity. Journal of Cognitive Neuroscience 2005;17(7):1026-1042.
88. Zieminska E, Toczylowska B, Diamandakis D, et al. Glutamate, glutamine and GABA levels in rat brain measured using MRS, HPLC and NMR methods in study of two models of autism. Frontiers in Molecular Neuroscience 2018;11:418.
89. Mora R, Berndt KD, Tsai H, Meredith SC. Quantitation of aspartate and glutamate in HPLC analysis of phenylthiocarbamyl amino acids. Analytical biochemistry 1988;172(2):368-376.
90. Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby Jr CR, Kawahara R. Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Progress in neuro-psychopharmacology and biological psychiatry 2006;30(6):1155-1158.
91. Beyene AM, Du X, E Schrunk D, Ensley S, Rumbeiha WK. High-performance liquid chromatography and enzyme-linked immunosorbent assay techniques for detection and quantification of aflatoxin B 1 in feed samples: a comparative study. BMC research notes 2019;12(1):1-6.
92. Li S, Hu N, Zhang W, et al. Dysconnectivity of multiple brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Frontiers in psychiatry 2019;10:482.
93. Li C-T, Yang K-C, Lin W-C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Frontiers in psychiatry 2019;9:767.
94. Crupi R, Impellizzeri D, Cuzzocrea S. Role of metabotropic glutamate receptors in neurological disorders. Frontiers in molecular neuroscience 2019;12:20.
95. Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in attention‐deficit/hyperactivity disorder: From physiology to disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2019;180(4):272-286.