簡易檢索 / 詳目顯示

研究生: 阮黃清風
Phong, Nguyen Huynh Thanh
論文名稱: 類囊體膜瓦解形成油粒體過程中的葉片老化相關轉錄因子功能研究
Function study of senescence-associated transcription factors in plastoglobuli formation during thylakoid membrane disassembly
指導教授: 李瑞花
Lee,Ruey-Hua
共同指導教授: 吳文鑾
Wu, Wen-Luan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 104
中文關鍵詞: 阿拉伯芥基因調控葉片老化類囊膜瓦解PAP-fibrillinplastoglobuli
外文關鍵詞: Arabidopsis thaliana, gene regulation, leaf senescence, thylakoid membrane degradation, PAP-fibrillin, plastoglobuli
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉綠體瓦解時,類囊膜是最早受瓦解的胞器內結構,而且可以觀察到葉綠體內部大量形成plastoglobule且數目及大小隨著瓦解程度的增加變多及變大Plastoglobule是單膜結構主要成分為半乳糖酯,並有蛋白質(如PAP-fibrillins)崁鑲在單膜表面上,PAP-fibrillins 被認為扮演穩定plastoglobule的結構型態、新陳代謝物運輸及抵抗逆境功能,為了瞭解發育及環境網絡如何調控PAP-fibrillin族群基因的表現,本研究利用阿拉伯芥為模式植物,探討14個PAP-fibrillin族群基因在葉片發育及老化不同發育時期的表現模式,分析PAP-fibrillin族群基因的promoter DNA序列,我們初步有分離40個引子基因可能扮演調控PAP-fibrillin族群基因表現的腳色,我們更進一步探討AtWRKY71 (At1g29860), AtNAC21/22 (AT1G56010), AtMYB2 (AT2G47190)和AtbZIP37/ABF3 (AT4G34000)老化相關引子在調控PAP-fibrillin基因表現所扮演的功能,從分析CREST-T表現異株,發現這些基因剃除植株有延緩葉片老化的現象,線已經建構基因大量表現轉植株及Promoter-GUS表現轉植株,這些植物材料可用為探討這幾個引子在調控PAP-fibrillin族群基因應對生長發育及環境逆境所扮演的腳色

    Degradation of the thylakoid membrane is the first step for chloroplast breakdown during leaf senescence and is masked by increase number and size of plastoglobuli. Plastoglobuli consist of an outer galactolipid monolayer studded with PAP-fibrillin on the surface of plastoglobuli. PAP-fibrillin suggested playing roles in maintaining the structural stability of plastoglobuli, metabolite transport and against biotic and abiotic stresses. We are interested in dissecting the regulatory network of PAP-fibrillin genes in response to developmental and environmental signals during leaf senescence in Arabidopsis. In this study, we have analyzed expression profiles of 14 PAP-fibrillin genes during different stages of leaf growth and senescence. Based on promoter sequences of these PAP-fibrillin genes, we have previously identified 40 putative transcription factors. In this study, we isolated CREST-T mutants AtWRKY71 (At1g29860), AtNAC21/22 (AT1G56010), AtMYB2 (AT2G47190) and AtbZIP37/ABF3 (AT4G34000). Null mutants for these transcription factors showed delayed senescence. We also generate over-expression transgenic plants for these transcription factors. Promoter-GUS expression constructs also prepared by cloning 2 kb promoter regions of these transcription factors. Function studies of these CREST-T mutants and over-expression transgenic plants, and examining the tissue specificities of gene expression will enable us better understanding of these transcription factors in the regulation of PAP-fibrillin genes expression in response to developmental and environmental signals.

    1. INTRODUCTION 1 1.1. Leaf senescence 1 1.1.1. Gene expression during leaf senescence 2 1.1.2. Chlorophyll and Protein degradation during leaf senescence 3 1.1.3. Why study leaf senescence? 4 1.2. Structure and function of chloroplast 4 1.2.1. Structure of chloroplast 4 1.2.2. Function of chloroplast 5 1.3. Thylakoid membranes 6 1.3.1. Composition of thylakoid membranes 6 1.3.2. Structural function of thylakoid membrane 7 1.4. Chloroplast degradation during leaf senescence 8 1.4.1.Cellular view 9 1.4.2. Degradation of thylakoid membrane 10 1.5. Formation of plastioglobules is a hallmark of chloroplast degradation 11 1.5.1. Structure and composition of plastioglobules 12 1.5.2. Function of plastioglobules 13 1.5.3. PAPs/fibrillin family proteins 13 1.6. Transcriptional regulation during leaf senescence 14 1.6.1. NAC transcription factor family 15 1.6.2. WRKY transcription factor family 17 1.6.3. MYB transcription factor family 20 1.6.4. bZIP transcription factor family 23 1.6. Research aim 24 2. MATERIALS AND METHODS 25 2.1. Growth and maintenance of Arabidopsis plant 25 2.2. Total RNA extraction and quantitation 25 2.3. Non-denaturing RNA and DNA agarose gel electrophoresis 26 2.4. Total chlorophyll extraction and quantitation 26 2.5. Retrieval of PAP-fibrillin cDNA, gDNA, promoter and amino acid sequences and phylogenetic analysis 27 2.6. Sequence analysis 27 2.7. Semi-Quantitative Reverse Transcription-PCR (RT-PCR) 28 2.8. Construction of transgenic plants 28 2.8.1 Preparation of chemically competent E. coli DH5α 28 2.8.2. Preparation of TF-ORFs cDNA flanking with SfiI sites 29 2.8.3. Subcloning of the TF-ORFs cDNA into the pENTR223.1-Sfi vector 29 2.8.4. Bacterials Transformation by heat shock 30 2.8.3. Colony PCR 30 2.8.4. Plasmid DNA isolation 31 2.8.5. Preparation of Escherichia coli glycerol stocks 31 2.8.6. Gateway cloning (LR reactions) 32 2.8.7. Sequencing 32 2.8.8. Generation of chemically competent Agrobacteria tumefaciens 32 2.8.9. Transformation of Agrobacteria tumefaciens ( freeze-thraw method) 33 2.8.10. Preparing Agrobacteria solution for plant transformation 33 2.8.11. Plant transformation 34 2.8.12 Selection of BASTA resistant Arabidopsistransformants in soil. 34 2.9. Confirmation of CRES-T mutant for senescence-associated transcription factor 35 2.9.1. Genotyping 35 2.9.2. Dark treatment 35 3. RESULTS 36 3.1. DNA and amino acid sequence analysis 36 3.2. The chlorophyll levels during different stages of leaf growth and senescence 37 3.3. Expression profiles of PAPs/fibrillins genes during different stages of leaf growth and senescence. 38 3.4. Expression profiles of putative transcription factors during different stages of leaf growth and senescence 38 3.5. Genotyping of CRES-T mutants for transcription factors 38 3.6. Constructing over-expression transgenic plants using pEarley103 Gateway vector 39 3.7. Constructing Gus-fusion transgenic plants using pCAMBIA1281Z expression vector 40 4. DISCUSSION 41 5. CONCLUSION 46 LIST OF TABLES AND FIGURES 47 Table 1. List of PAP-fibrillin family genes in Arabidopsis thaliana. 48 Table 2. List of primers used for studying expression level of 14 PAP-fibrillin genes by RT-PCR. 49 Table 3. List of five senescence-associated transcription factors in Arabidopsis thaliana 50 Table 4. List of primers used for studying expression level of five senescence-associated TFs by RT-PCR. 51 Table 5. PAP/fibrillin genes twin-peak expression during both young stage of senescent stages of leaf development and senescence 52 Table 6. List of primers used for constructing transgenic plants 53 Table 7. List of primers used for amplification of 2 kb promoter regions in four transctiption factors. 54 Figure 1. Phylogenetic analysis of Arabidopsis PAP-fibrillin proteins. A phylogenetic tree was generated by using iTOL (http://itol.embl.de/upload.cgi) software. 55 Figure 2. Phylogenetic analysis of the PAP-fibrillin family proteins in different plants. A phylogenetic tree was generated by using iTOL (http://itol.embl.de/upload.cgi) software. 56 Figure 3. Structures of 14 PAP-fibrillin genes in Arabidopsis thaliana 57 Figure 4. Conserved motif in PAP-fibrillin family proteins in Arabidopsis showing PAP-fibrillin conserved motif (red underline); Serine/threonine kinase motif (green underline); ATP binding site (black underline) and unknown conserved motif (blue box) 58 Figure 5 Putative cis-elements of AtWRKY71 transcription factor A) cis-elements logo, B) percentage of nucleotide type for each position and C) alignment of putative cis-elements showing core sequences for AtWRKY71 binding to DNA. 59 Figure 6. Putative cis-elements of AtNAC21-22 transcription factor. A) putative cis-elements logo, B) percentage of nucleotide type for each position and C) putative cis-elements of AtNAC21-22 60 Figure 7. Putative cis-elements of AtMYB2 transcription factor, A) cis-elements logo, B) percentage of nucleotide type for each position and C) alignment of putative cis-elements showing core sequences for AtMYB2 binding to DNA. 61 Figure 8. Putative cis-elements of AtbZIP37/AtABF3 transcription factor, A) cis-elements logo, B) percentage of nucleotide type for each position and C) alignment of putative cis-elements showing core sequences for AtbZIP37/AtABF3 binding to DNA. 62 Figure 9. Putative binding sites for AtWRKY transcription factors on 1KB promoter of 14 PAP-fibrillin genes. The putative binding sites were prepared using AthaMap (http://www.athamap.de/). 63 Figure 10. Putative binding sites for AtNAC transcription factors on 1KB promoter of 14 64 Figure 11. Putative binding sites for AtMYB transcription factors on 1KB promoter of 14 PAP-fibrillin genes. The putative binding sites were prepared using AthaMap (http://www.athamap.de/). 65 Figure 12. Putative binding sites for AtbZIP transcription factors on 1KB promoter of 14 PAP-fibrillin genes. The putative binding sites were prepared using AthaMap (http://www.athamap.de/). 66 Figure 13. Phylogenetic analysis of AtWRKY71 (At1g29860) homologus, paralogous and orthologous proteins in Arabidopsis, Oryza sativa, Sorghum bicolor, Vitis vinifera, Selaginella moellendorffii and Physcomitrella patens. Phylogenetic analysis was carried out SALAD 3.0 program (http://salad.dna.affrc.go.jp/salad/en/ ). 67 Figure 14. Phylogenetic analysis of AtNAC21-22 (AT1G56010) homologus, paralogous and orthologous proteins in Arabidopsis, Oryza sativa, Sorghum bicolor, Vitis vinifera, Selaginella moellendorffii and Physcomitrella patens. Phylogenetic analysis was carried out with SALAD 3.0 program (http://salad.dna.affrc.go.jp/salad/en/ ). 68 Figure 15. Phylogenetic analysis of AtMYB2 (AT2G47190) homologus, paralogous and orthologous proteins in Arabidopsis, Oryza sativa, Sorghum bicolor, Vitis vinifera and Selaginella moellendorffii. Phylogenetic analysis was carried out with SALAD 3.0 program (http://salad.dna.affrc.go.jp/salad/en/ ). 69 Figure 16. Phylogenetic analysis of AtbZIP37/ABF3 (AT4G34000) homologus, paralogous and orthologous proteins in Arabidopsis, Oryza sativa, Sorghum bicolor, Vitis vinifera and Selaginella moellendorffii. Phylogenetic analysis was carried out with SALAD 3.0 program (http://salad.dna.affrc.go.jp/salad/en/ ). 70 Figure 17. A phylogenetic tree of 90 WRKY transcription factors in Arabidopsis was generated by using iTOL (http://itol.embl.de/upload.cgi) software. 71 Figure 18. A phylogenetic tree of 110 NAC transcription factors in Arabidopsis was generated by using iTOL (http://itol.embl.de/upload.cgi) software. 72 Figure19. A phylogenetic tree of 168 MYB transcription factors in Arabidopsis was generated by using iTOL (http://itol.embl.de/upload.cgi) software 73 Figure 20. A phylogenetic tree of 127 bZIP transcription factors in Arabidopsis was generated by using iTOL (http://itol.embl.de/upload.cgi) software. 74 Figure 21. Leaves were harvested from plants after 6 to 14 weeks of sowing. a) plant growth, b) leaf samples and c) 1 µg of total RNA electrophoresed on a 1% agarose gel. 75 Figure 22. Total chlorophyll contents at different stages of leaf growth and development after 6 to 14 weeks of sowing. Numbers above the bars are mean total chlorophyll contents in mg for per gram leaf tissues calculated from three replicates. 76 Figure 23A. Expression patterns and levels of gene expression for PAP-fibrillin genes detected by RT-PCR. 77 Figure 23B. Expression patterns of PAP-fibrillin genes are divided into five groups during different stages of leaf growth and senescence. 78 Figure 24. Expression patterns of different transcription factors during different stages of leaf growth and senescence. At1g29860, AtWRKY71; AT1G56010.1, AtNAC21; AT1G56010.2, AtNAC22; AT2G47190, AtMYB2; AT4G34000, AtbZIP37/ABF3. 79 Figure 25. Vector construct for CRES-T mutants. 80 Figure 26. Genotyping and expression levels transcription factors in T4 CRES-T mutants. 81 Figure 27. Plant growth of the wild type and CRES-T mutants after 6 weeks of plant growth. 82 Figure 28. Senescence phenotype of the wild type and CRES-T mutants after 35 days of continuous dark treatment. 83 Figure 29. Work flow for construction over-expression transgenic plants for transcription factors. 84 Figure 30. RT-PCR amplification of ORFs for AtWRKY71 (At1g29860), AtNAC21 (AT1G56010.1), AtNAC22 (AT1G56010.2), AtMYB2 (AT2G47190) and AtbZIP37/ABF3 (AT4G34000). 85 Figure 31. Transcription factor ORFs were subcloned into pENTR223.1-Sfi as entry vector for LR Gateway reaction into pEarley103 destination vector 86 Figure 32. Restriction enzyme digestion for checking transcription factor ORFs DNA fragments in pEarley103. 87 Figure 33. Arabidopsis plant transformation by floral dip. 88 Figure 34. Herbicide selection (BASTA) for transgenic plants using 120 mg/L phosphinothricin after 0 day (0D) and 9 days (9D) treatments. 89 Figure 35. PCR amplification of 2 kb promoter DNA fragments upstream of start codons for AtWRKY71 (At1g29860), AtNAC21/22 (AT1G56010), AtMYB2 (AT2G47190) and AtbZIP37/ABF3 (AT4G34000) genes. 90 Figure 36. Constructing promoter GUS-fusion constructs. pCAMBIA1281Z GUS expression vector is used (upper panel). Restriction enzyme digestion shows presence of transgenes in the vector (lower panel). 91 Figure 35. Work flow for generation of promoter-GUS fusion transgenic plants used in studying tissue specificity of gene expression. 92 Figure 38. Antibiotics and cloning vectors used for this study. 93 REFERENCES 94

    Andersson, B., & Anderson, J. M. (1980). Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 593(2), 427-440.
    Andersson, M. X., & Dörmann, P. (2009). Chloroplast membrane lipid biosynthesis and transport the Chloroplast (pp. 125-158): Springer.
    Bhalerao, R., Keskitalo, J., Sterky, F., Erlandsson, R., Björkbacka, H., Birve, S. J., . .. Lundeberg, J. (2003). Gene expression in autumn leaves. Plant Physiology, 131(2), 430-442.
    Bitanihirwe, B. K., & Woo, T.-U. W. (2011). Oxidative stress in schizophrenia: an integrated approach. Neuroscience & Biobehavioral Reviews, 35(3), 878-893.
    Block, M. A., Dorne, A.-J., Joyard, J., & Douce, R. (1983). Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. Journal of Biological Chemistry, 258(21), 13281-13286.
    Buchanan-Wollaston, V. (1997). The molecular biology of leaf senescence. Journal of experimental botany, 48(2), 181-199.
    Conconi, A., Smerdon, M. J., Howe, G. A., & Ryan, C. A. (1996). The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation.
    Chang, H., Jones, M. L., Banowetz, G. M., & Clark, D. G. (2003). Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiology, 132(4), 2174-2183.
    D'Souza, S. E., Ginsberg, M. H., & Plow, E. F. (1991). Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends in Biochemical Sciences, 16, 246-250.
    Daum, B., Nicastro, D., Austin, J., McIntosh, J. R., & Kühlbrandt, W. (2010). Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. The Plant Cell Online, 22(4), 1299-1312.
    Dekker, J. P., & Boekema, E. J. (2005). Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706(1), 12-39.
    Deruère, J., Römer, S., d'Harlingue, A., Backhaus, R. A., Kuntz, M., & Camara, B. (1994). Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. The Plant Cell Online, 6(1), 119-133.
    Elkehal, R., Becker, T., Sommer, M. S., Königer, M., & Schleiff, E. (2012). Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(5), 1033-1040.
    Fleet, C. M., & Sun, T.-p. (2005). A DELLAcate balance: the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology , 8(1), 77-85.
    Fletcher, R., & OSBORNE, D. J. (1965). Regulation of protein and nucleic acid synthesis by gibberellin during leaf senescence.
    Fracheboud, Y., Luquez, V., Björkén, L., Sjödin, A., Tuominen, H., & Jansson, S. (2009). The control of autumn senescence in European aspen. Plant Physiology, 149(4), 1982-1991.
    Galetskiy, D., Susnea, I., Reiser, V., Adamska, I., & Przybylski, M. (2008). Structure and dynamics of photosystem II light-harvesting complex revealed by high-resolution FTICR mass spectrometric proteome analysis. Journal of the American Society for Mass Spectrometry, 19(7), 1004-1013.
    Gan, S. (2003). Mitotic and postmitotic senescence in plants. Science's SAGE KE, 2003(38), 7.
    Gan, S. (2010). The hormonal regulation of senescence. Plant Hormones, 597-617.
    Gan, S., & Amasino, R. M. (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology, 113(2), 313.
    Gepstein, S., Sabehi, G., Carp, M. J., Hajouj, T., Nesher, M. F. O., Yariv, I., . . . Bassani, M. (2003). Large‐scale identification of leaf senescence‐associated genes. The Plant Journal, 36(5), 629-642.
    Grbić, V., & Bleecker, A. B. (1995). Ethylene regulates the timing of leaf senescence in Arabidopsis. The Plant Journal, 8(4), 595-602.
    Groppa, M. a. D., Tomaro, M. a. L., & Benavides, M. a. P. (2001). Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Science, 161(3), 481-488.
    Gillet, B., Beyly, A., Peltier, G., & Rey, P. (1998). Molecular characterization of CDSP 34, a chloroplastic protein induced by water deficit inSolanum tuberosumL. plants, and regulation ofCDSP 34expression by ABA and high illumination. The Plant Journal, 16(2), 257-262.
    Harms, K., Atzorn, R., Brash, A., Kuhn, H., Wasternack, C., Willmitzer, L., & Pena-Cortes, H. (1995). Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. The Plant Cell Online, 7(10), 1645-1654.
    Harwood, J. L., & Russell, N. J. (1984). Lipids in plants and microbes: George Allen & Unwin.
    He, Y., & Gan, S. (2001). Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant Molecular Biology, 47(5), 595-605.
    Herde, O., Atzorn, R., Fisahn, J., Wasternack, C., Willmitzer, L., & Pena-Cortes, H. (1996). Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid-deficient plants by triggering jasmonic acid biosynthesis. Plant Physiology, 112(2), 853-860.
    Hoch, W. A., Zeldin, E. L., & McCown, B. H. (2001). Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiology, 21(1), 1-8.
    Hopkins, M., Taylor, C., Liu, Z., Ma, F., McNamara, L., Wang, T. W., & Thompson, J. E. (2007). Regulation and execution of molecular disassembly and catabolism during senescence. New Phytologist, 175(2), 201-214.
    Inaba, T., & Ito-Inaba, Y. (2010). Versatile roles of plastids in plant growth and development. Plant and Cell Physiology, 51(11), 1847-1853.
    Ishida, H., Yoshimoto, K., Izumi, M., Reisen, D., Yano, Y., Makino, A., . . . Mae, T. (2008). Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiology, 148(1), 142-155.
    Ishida, H., Yoshimoto, K., Reisen, D., Makino, A., Ohsumi, Y., Hanson, M. R., & Mae, T. (2008). Visualization of rubisco-containing bodies derived from chloroplasts in living cells of ArabidopsisPhotosynthesis. Energy from the Sun (pp. 1207-1210): Springer.
    Jiao, B.-B., Wang, J.-J., Zhu, X.-D., Zeng, L.-J., Li, Q., & He, Z.-H. (2012). A Novel Protein RLS1 with NB–ARM Domains Is Involved in Chloroplast Degradation during Leaf Senescence in Rice. Molecular plant, 5(1), 205-217.
    Jibran, R., Hunter, D. A., & Dijkwel, P. P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 82(6), 547-561.
    Johnson, P. R., & Ecker, J. R. (1998). The ethylene gas signal transduction pathway: a molecular perspective. Annual review of genetics, 32(1), 227-254.
    Jones, A. M., Bennett, M. H., Mansfield, J. W., & Grant, M. (2006). Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics, 6(14), 4155-4165.
    Jones, M. R. (2007). Lipids in photosynthetic reaction centres: structural roles and functional holes. Progress in lipid research, 46(1), 56-87.
    Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., & Krauß, N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature, 411(6840), 909-917.
    Joshi, P., Biswal, B., & Biswal, U. (1991). Effect of UV-A on aging of wheat leaves and role of phytochrome. Environmental and experimental botany, 31(3), 267-276.
    Jung, H.-S., & Chory, J. (2010). Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiology, 152(2), 453-459.
    Keskitalo, J., Bergquist, G., Gardeström, P., & Jansson, S. (2005). A cellular timetable of autumn senescence. Plant Physiology, 139(4), 1635-1648.
    Krupinska, K. (2006). Fate and activities of plastids during leaf senescence The Structure and Function of Plastids (pp. 433-449): Springer.
    Langenkämper, G., Manac'h, N., Broin, M., Cuiné, S., Becuwe, N., Kuntz, M., & Rey, P. (2001). Accumulation of plastid lipid‐associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. Journal of experimental botany, 52(360), 1545-1554.
    Lee, R. H., & Chen, S. C. G. (2002). Programmed cell death during rice leaf senescence is nonapoptotic. New Phytologist, 155(1), 25-32.
    Lee, R. H., Hsu, J. H., Huang, H. J., Lo, S. F., & Grace Chen, S. C. (2009). Alkaline α‐galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. New Phytologist, 184(3), 596-606.
    Lichtenthaler, H. (1968). Plastoglobuli and the fine structure of plastids. Endeavour, 27, 144-149.
    Lim, P. O., Kim, H. J., & Gil Nam, H. (2007). Leaf senescence. Annu. Rev. Plant Biol., 58, 115-136.
    Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., . . . Chang, W. (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature, 428(6980), 287-292.
    Loll, B., Kern, J., Saenger, W., Zouni, A., & Biesiadka, J. (2007). Lipids in photosystem II: interactions with protein and cofactors. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(6), 509-519.
    López-Juez, E., & Hills, A. (2011). Screening or Selection for Chloroplast Biogenesis Mutants of Arabidopsis, Following Chemical or Insertional Mutagenesis Chloroplast Research in Arabidopsis(pp. 3-18): Springer.
    Lu, B., & Benning, C. (2009). A 25-amino acid sequence of the ArabidopsisTGD2 protein is sufficient for specific binding of phosphatidic acid. Journal of Biological Chemistry, jbc. M109. 016014.
    Lundquist, P. K., Poliakov, A., Giacomelli, L., Friso, G., Appel, M., McQuinn, R. P., . . . Sun, Q. (2013). Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. The Plant Cell Online, 25(5), 1818-1839.
    Marler, T., & Muniappan, R. (2006). Pests of Cycas micronesica leaf, stem, and male reproductive tissues with notes on current threat status. MICRONESICA-AGANA-, 39(1), 1.
    Martínez, D., Costa, M., & Guiamet, J. (2008). Senescence‐associated degradation of chloroplast proteins inside and outside the organelle. Plant Biology, 10(s1), 15-22.
    Martínez, D. E., Costa, M. L., Gomez, F. M., Otegui, M. S., & Guiamet, J. J. (2008). ‘Senescence‐associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. The Plant Journal, 56(2), 196-206.
    Miller, J. D., Arteca, R. N., & Pell, E. J. (1999). Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiology, 120(4), 1015-1024.
    Mizusawa, N., & Wada, H. (2012). The role of lipids in photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 194-208.
    Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203-216.
    Mustárdy, L., Buttle, K., Steinbach, G., & Garab, G. (2008). The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. The Plant Cell Online, 20(10), 2552-2557.
    Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsisand grasses. Plant Physiology, 149(1), 88-95.
    Niwa, Y., Kato, T., Tabata, S., Seki, M., Kobayashi, M., Shinozaki, K., & Moriyasu, Y. (2004). Disposal of chloroplasts with abnormal function into the vacuole in Arabidopsis thaliana cotyledon cells. Protoplasma, 223(2-4), 229-232.
    Noh, Y.-S., & Amasino, R. M. (1999). Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Molecular Biology, 41(2), 181-194.
    Noodén, L. D. (2003). Plant cell death processes: Academic Press.
    Nußberger, S., Dörr, K., Wang, D. N., & Kühlbrandt, W. (1993). Lipid-protein interactions in crystals of plant light-harvesting complex. Journal of molecular biology, 234(2), 347-356.
    Okazaki, Y., Shimojima, M., Sawada, Y., Toyooka, K., Narisawa, T., Mochida, K., . . . Hirai, M. Y. (2009). A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsisis the committed enzyme for the first step of sulfolipid biosynthesis. The Plant Cell Online, 21(3), 892-909.
    Otegui, M. S., Noh, Y. S., Martínez, D. E., Vila Petroff, M. G., Andrew Staehelin, L., Amasino, R. M., & Guiamet, J. J. (2005). Senescence‐associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsisand soybean. The Plant Journal, 41(6), 831-844.
    Park, S.-J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., . . . Brown, A. L. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 148(3), 421-433.
    Porfirova, S., Bergmüller, E., Tropf, S., Lemke, R., & Dörmann, P. (2002). Isolation of an Arabidopsismutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proceedings of the National Academy of Sciences, 99(19), 12495-12500.
    Prins, A., Van Heerden, P. D., Olmos, E., Kunert, K. J., & Foyer, C. H. (2008). Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies. Journal of experimental botany, 59(7), 1935-1950.
    Pruvot, G., Massimino, J., Peltier, G., & Rey, P. (1996). Effects of low temperature, high salinity and exogenous ABA on the synthesis of two chloroplastic drought‐induced proteins in Solanum tuberosum. Physiologia Plantarum, 97(1), 123-131.
    Quirino, B. F., Noh, Y.-S., Himelblau, E., & Amasino, R. M. (2000). Molecular aspects of leaf senescence. Trends in plant science, 5(7), 278-282.
    Quirino, B. F., Normanly, J., & Amasino, R. M. (1999). Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Molecular Biology, 40(2), 267-278.
    Reich, P. B., & Lassoie, J. P. (1985). Influence of low concentrations of ozone on growth, biomass partitioning and leaf senescence in young hybrid poplar plants. Environmental Pollution Series A, Ecological and Biological, 39(1), 39-51.
    Reinbothe, C., Springer, A., Samol, I., & Reinbothe, S. (2009). Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS journal, 276(17), 4666-4681.
    Reinsberg, D., Booth, P. J., Jegerschöld, C., Khoo, B. J., & Paulsen, H. (2000). Folding, assembly, and stability of the major light-harvesting complex of higher plants, LHCII, in the presence of native lipids. Biochemistry, 39(46), 14305-14313.
    Ribas, A., Penuelas, J., Elvira, S., & Gimeno, B. S. (2005). Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. Environmental Pollution, 134(2), 291-300.
    Robatzek, S., & Somssich, I. E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes & Development, 16(9), 1139-1149.
    Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Dawood, A., Wilhelm, C., Strzałka, K., & Goss, R. (2011). Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(3), 326-335.
    Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Wilhelm, C., Strzałka, K., & Goss, R. (2010). The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(3), 414-424.
    Schattat, M., Barton, K., Baudisch, B., Klösgen, R. B., & Mathur, J. (2011). Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiology, 155(4), 1667-1677.
    Schippers, J. H., Jing, H.-C., Hille, J., & Dijkwel, P. P. (2007). Developmental and hormonal control of leaf senescence. Senescence processes in plants, 145-170.
    Selstam, E., & Campbell, D. (1996). Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Archives of microbiology, 166(2), 132-135.
    Siegenthaler, P. A., & Murata, N. (1998). Lipids in Photosynthesis: Structure, Function, and Genetics: Springer.
    Singh, D. K., Maximova, S. N., Jensen, P. J., Lehman, B. L., Ngugi, H. K., & McNellis, T. W. (2010). FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiology, 154(3), 1281-1293.
    Solovchenko, A., & Merzlyak, M. (2008). Screening of visible and UV radiation as a photoprotective mechanism in plants. Russian Journal of Plant Physiology, 55(6), 719-737.
    Staehelin, L. (1986). Chloroplast structure and supramolecular organization of photosynthetic membranes Photosynthesis III (pp. 1-84): Springer.
    Steyn, W., Wand, S., Holcroft, D., & Jacobs, G. (2002). Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist, 155(3), 349-361.
    Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., . . . Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85(2), 171-182.
    Szilágyi, A., Selstam, E., & Åkerlund, H.-E. (2008). Laurdan fluorescence spectroscopy in the thylakoid bilayer: The effect of violaxanthin to zeaxanthin conversion on the galactolipid dominated lipid environment. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(1), 348-355.
    Thompson, J., Legge, R., & Barber, R. (1987). Tansley review No. 8. the role of free radicals in senescence and wounding. New Phytologist, 317-344.
    Trosper, T., & Sauer, K. (1968). Chlorophyll< i> a</i> interactions with chloroplast lipids in vitro. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 162(1), 97-105.
    van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flügge, U.-I., & Kunze, R. (2006). Transcription analysis of Arabidopsismembrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiology, 141(2), 776-792.
    Weaver, L. M., Himelblau, E., & Amasino, R. M. (1997). Leaf senescence: gene expression and regulation Genetic engineering (pp. 215-234): Springer.
    Webb, M. S., & Green, B. R. (1991). Biochemical and biophysical properties of thylakoid acyl lipids. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1060(2), 133-158.
    Yang, Y., Sulpice, R., Himmelbach, A., Meinhard, M., Christmann, A., & Grill, E. (2006). Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proceedings of the National Academy of Sciences, 103(15), 6061-6066.
    Youssef, A., Laizet, Y. h., Block, M. A., Maréchal, E., Alcaraz, J. P., Larson, T. R., . . . Kuntz, M. (2010). Plant lipid‐associated fibrillin proteins condition jasmonate production under photosynthetic stress. The Plant Journal, 61(3), 436-445.
    Zacarias, L., & Reid, M. S. (1990). Role of growth regulators in the senescence of Arabidopsis thaliana leaves. Physiologia Plantarum, 80(4), 549-554.
    Zeevaart, J., & Creelman, R. (1988). Metabolism and physiology of abscisic acid. Annual review of plant physiology and Plant Molecular Biology, 39(1), 439-473.
    Zhu, Y.-X., & Davies, P. J. (1997). The control of apical bud growth and senescence by auxin and gibberellin in genetic lines of peas. Plant Physiology, 113(2), 631-637.

    下載圖示 校內:2022-02-01公開
    校外:2022-02-01公開
    QR CODE