簡易檢索 / 詳目顯示

研究生: 雲遠德
Yun, Yuan-Der
論文名稱: 二甲基甲醯胺、丁酮暨甲苯混合暴露之職業環境對生物偵測之影響
Biological monitoring of occupational exposure to the mixture of N,N-dimethylformamide, methyl ethyl ketone, and toluene
指導教授: 張火炎
Chang, Ho-Yuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 84
中文關鍵詞: 共同暴露生物暴露指標累積傳統動力學丁酮曲線下面積二甲基甲醯胺甲苯單甲基甲醯胺生物偵測
外文關鍵詞: MRT, conventional kinetics, half-life, co-exposure, accumulation, methyl ethyl ketone (MEK), toluene (TOL), AUC, biological monitoring, N-methylformamide (NMF), N-dimethylformamide (DMF), biological exposure index, PBPK, N
相關次數: 點閱:165下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在一般的環境或職場中,人類暴露到化學物質通常為混合物暴露,隨著化學物質的組成與強度不同,混合物暴露可能會導致其毒性降低或是增加。在職場環境中極易同時暴露到二甲基甲醯胺 (DMF)、丁酮 (MEK) 與甲苯 (TOL),本研究主要目的是探討共同暴露丁酮與甲苯不同濃度時,對於DMF暴露生物指標即尿中DMF (U-DMF ) 與尿中NMF (U-NMF) 的影響,及探討DMF混合暴露下對MKE生物偵測的影響。研究上採二階段現場採樣策略,第一階段對於選定之一家合成皮工廠所有可能暴露DMF的勞工 (n=65) 進行個人空氣樣本採樣,依據DMF與共同暴露 (MEK/TOL) 濃度高低選取其中20位勞工分成四組,進行第二階段採樣包括連續二日及連續五日的實測,環境偵測包括個人空氣DMF, MEK與TOL及皮膚DMF暴露濃度測定,而生物偵測則收集勞工上、下班尿液樣本以及二日下班後至少連續36小時尿液樣本以分析U-DMF、U-NMF、U-AMCC與U-MEK濃度。連續二日的結果發現,高DMF暴露組的U-DMF濃度無論共同暴露高低均一致較低DMF暴露組的U-DMF濃度顯著為高 (p<0.05),此與四組DMF空氣暴露濃度趨勢呈現一致;然而在U-NMF方面則顯示不同的結果,DMF與混合暴露皆為高暴露組其U-NMF與U-AMCC較高DMF暴露但低共同暴露組的U-NMF顯著為低。由代謝指標比 (metabolic index, MI) 在四組分布情況可發現,高濃度共同暴露會在DMF高暴露時,對DMF生化轉換成NMF與AMCC產生顯著之抑制作用 (p<0.05);再進一步以簡單線性迴歸可得知,高DMF暴露 (>7.8 ppm) 時增加一個自然指數單位的MEK及TOL分別對MI降低為原來的0.78與0.63倍。在連續五日的實測部分,本研究發現高混合暴露下每日上班前U-NMF會隨著暴露天數的增加而顯著累積在體內,在暴露DMF相同濃度下,當日產生NMF的濃度會是前一天NMF濃度的1.40倍,而在低混合暴露組則無U-NMF之逐日累積情形;動力學方面,發現高混合暴露的勞工其U-NMF的排出延滯時間較低混合暴露勞工之U-NMF為長,而且在半衰期、曲線下面積 (AUC) 及平均滯留時間 (MRT) 亦表現較長,顯示高混合暴露致使DMF代謝成NMF所需時間較長,且NMF留下在體內也較久。MEK之生物指標物 (U-MEK) 方面,經由高低DMF暴露濃度分組後的A-MEK與下班前U-MEK之簡單迴歸分析,發現U-MEK未受DMF暴露濃度高低而有顯著影響;然而在動力學表現上,卻顯示高混合暴露下U-MEK的半衰期及終止暴露後的濃度均較低混合暴露組為長或高。因此混合暴露仍可能對U-MEK產生影響,唯本研究動力學樣本數過少,未能在此議題下定明確的結論,未來應收集較多動力學樣本數方能給予更正確的答案;PBPK模式由於採樣參數可能有人種差異、暴露實態及樣本數過少的問題,其模擬曲線與動力學實測值部分差異,尤其是終止暴露後之最高濃度值更為明顯,未來應以台灣人 (黃種人) 之參數來進行模擬方能得到較佳的PBPK模式。本研究的結論是當有高混合暴露 (MEK/TOL) 時對DMF職業暴露之生物偵測可能於高濃度DMF (GM=7.8 ppm) 下,會有下列情況產生,1. 尿中NMF與AMCC會受到抑制,2. 隨著暴露天數增加上班前NMF會有逐日累積情形,3. NMF排出延滯時間增長,且半衰期、AUC及MRT也較長。另一方面,下班前U-MEK未受DMF混合暴露高低之影響,但於連續36小時尿液之傳統動力學方面則顯示高混合暴露下U-MEK的半衰期及終止暴露後的濃度均較低混合暴露組為長或高。因此混合暴露仍可能對U-MEK產生影響,但此結論需進一步研究方可確定。因為DMF暴露的職業現場之MEK/TOL共同暴露是十分普遍,我們建議未來在相關職場進行生物偵測時,需同時考量混合暴露的濃度及勞工已暴露DMF天數,以對生物暴露指標進行適當調整,以免對現場作業員工的DMF之暴露產生低估。

      The exposure of the humans to the chemical mixtures is the general rule in the general environment as well as in most occupational settings. Lower toxicity or higher toxicity from mixtures than the expected depends on their constituents and potencies. It is very likely that the workers could be exposed to N,N-dimethylformamide (DMF), methyl ethyl ketone (MEK), and toluene (TOL) in the occupational environments simultaneously. This study was aimed to investigate the effects of the different co-exposure levels of MEK and toluene and different DMF on different biomarkers of DMF exposure metabolism-free form (U-DMF) and biotransformation-required forms (U-NMF, and U-AMCC), and the effects of co-exposure to DMF on urinary MEK biomarker, respectively. Twenty workers were selected from a two-stage field investigation strategy and were classified into four subgroups based on their DMF exposure and co-exposure levels. Breathing-zone air concentrations of DMF, MEK and TOL as well as dermal DMF exposure were determined for two consecutive and another five consecutive working days. The concentrations of U-DMF, U-NMF, U-AMCC and U-MEK in pre- and post-shift as well as during at least 36-hour period since the end of the exposure for each individual were analyzed. For post-shift urine measurements, we found U-DMF concentrations in high DMF subgroups were significantly higher than those in low DMF subgroups (p<0.05). On the other hand, U-NMF and U-AMCC concentrations in high-DMF-high-coexposure subgroup were significantly lower than those in high-DMF-high-coexposure subgroup but no significant differences between two low DMF subgroups. Metabolic index (MI) showed the biotransformation from DMF to NMF, but not from NMF to AMCC, was significantly suppressed at high co-exposure (p<0.001). We also found a significant daily accumulation of pre-shift U-NMF across five consecutive working days for those who have high co-exposure to high MEK/TOL and the day-to-day increase of U-NMF at pre-shift was approximate 1.4-fold given the occupational exposure to DMF at the same level. The lag time of excretory U-NMF for high MEK/TOL co-exposure group was significantly longer that for low co-exposure group in conventional kinetics study. The estimates of half-life, area under curve (AUC), and mean residence time (MRT) also showed the same tendency as found for lag time. For the biological monitoring of MEK part, the regression equations of A-MEK to post-shift U-MEK showed no significant differences between high and low DMF co-exposure groups. On the other hand, the estimates of the half-life and maximum concentration of post-shift U-MEK for high DMF co-exposure groups were greater than those for low DMF co-exposure groups in kinetics study. Owing to the insufficient sample sizes, this finding warranted a further study. The discrepancy between conventional kinetics approach and physiologically-based pharmacokinetics (PBPK) approach could result from the differences in races and exposure scenarios as well as insufficient sample size. We concluded that co-exposure to high MEK/TOL could result in 1. the suppression of U-NMF and U-AMCC at high DMF exposure; 2. the accumulation of U-NMF at daily pre-shift urines; 3). the increases of the lag time, half-life, MRT, and AUC for U-NMF. Difference. For the biological monitoring of MEK part, no significant effects of co-exposure to DMF on post-shift U-MEK. Some effects might exist in the estimates of the kinetic parameters and this warranted a further study to confirm. Due to the ubiquity of co-existence of MEK, TOL and DMF in occupational settings, biological monitoring for the above-mentioned chemicals should be carefully evaluated while the co-exposure is substantial and a more comprehensive longitudinal health evaluation program should be performed for those workers.

    Abstract..............................................................1 摘 要..............................................................4 第一章 序論........................................................12 1.1 研究背景....................................................12 1.2 合成皮工業簡介..............................................13 1.3 研究意義與重要性............................................15 1.4 研究目的....................................................16 1.5 研究架構....................................................16 第二章 文獻探討....................................................17 2.1 DMF的特性...................................................17 2.1.1 物化特性....................................................17 2.1.2 代謝路徑與健康效應..........................................17 2.1.3 DMF之皮膚吸收探討...........................................18 2.1.4 生物偵測....................................................18 2.2 MEK的特性...................................................19 2.2.1 物化特性....................................................19 2.2.2 代謝路徑與健康效應..........................................19 2.2.3 生物指標....................................................20 2.3 TOL之物化特性...............................................20 2.3.1 物化特性....................................................20 2.3.2 代謝路徑與健康效應..........................................20 2.3.3 生物偵測....................................................20 2.4 混合暴露的文獻回顧..........................................21 第三章 材料與方法..................................................23 3.1 使用材料及儀器設備..........................................23 3.1.1 採樣材料:..................................................23 3.1.2 分析儀器:..................................................23 3.1.3 使用藥品:..................................................23 3.2 研究對象之選取..............................................24 3.3 環境偵測-空氣DMF, MEK及TOL暴露濃度.........................24 3.3.1 空氣樣本之前處理............................................25 3.3.2 空氣樣本之分析條件..........................................25 3.3.3 空氣樣本之品保、保管與偵測下限..............................25 3.4 環境測定-皮膚DMF暴露濃度...................................25 3.4.1 皮膚樣本之分析方法..........................................26 3.4.2 皮膚樣本品保、保管與偵測下限................................26 3.5 生物偵測策略................................................26 3.5.1 尿中DMF與NMF之分析方法......................................26 3.5.1.1. 尿中DMF與NMF分析之前處理....................................27 3.5.1.2. 尿中DMF與NMF分析之儀器條件..................................27 3.5.2 尿中MEK之分析方法...........................................27 3.5.3 尿中AMCC之分析方法..........................................28 3.5.3.1 AMCC分析方法之前處理........................................28 3.5.3.2 儀器分析條件................................................28 3.5.4 尿液樣本之品保、保管與偵測下限..............................28 3.6 動力學公式..................................................29 3.7 PBPK模式建立................................................29 3.8 資料分析....................................................30 第四章 結果與討論..................................................31 4.1 勞工基本人口統計學..........................................31 4.2 連續二日之DMF、MEK與TOL環境偵測.............................31 4.3 連續二日之DMF生物偵測.......................................32 4.4 連續五日生物指標物之累積探討................................34 4.5 DMF職業暴露之生物指標物動力學...............................35 4.6 MEK之生物偵測...............................................35 4.7 MEK生物指標物之動力學與生理學基礎的藥物動力學 (PBPK)........36 第五章 結論與建議..................................................38 參考文獻.............................................................40

    Abbate, C., Giorgianni, C., Munao, F. and Brecciaroli, R. "Neurotoxicity induced by exposure to toluene. An electrophysiologic study." International Archives of Occupational & Environmental Health 64(6): 389-92. 1993.
    ACGIH "Documentation of the Threshold Limit Values and Biological Exposure Indices, 6th ed." American Conference of Governmental Industrial Hygienists, Inc.: Cincinnati, OH, 2: 1002-1004. 1991.
    ACGIH "2000 TLVs and BEIs. Threshold limit values for chemical substances and physical agents and biological exposure indices." American Conference of Governmental Industrial Hygienists, Inc.: Cincinnati, OH, : 80-2. 2000.
    ACGIH "Documentation of the threshold limit values and biological exposure indices." 7th edtion. ACGIH, Cincinnati, USA. 2002.
    Andersen, I., Lundqvist, G. R., Molhave, L., Pedersen, O. F., Proctor, D. F., Vaeth, M. and Wyon, D. P. "Human response to controlled levels of toluene in six-hour exposures." Scandinavian Journal of Work, Environment & Health 9(5): 405-18. 1983.
    Angerer, J., Schildbach, M. and Kramer, A. "Gas chromatographic method for the simultaneous determination of S-p-toluylmercapturic acid and S-phenylmercapturic acid in human urine." Journal of Analytical Toxicology. 22(3): 211-4. 1998.
    Anonymous "Reproductive toxicology. N,N-dimethylformamide." Environmental Health Perspectives 1: 305-7. 1997.
    Baelum, J., Andersen, I. B., Lundqvist, G. R., Molhave, L., Pedersen, O. F., Vaeth, M. and Wyon, D. P. "Response of solvent-exposed printers and unexposed controls to six-hour toluene exposure." Scandinavian Journal of Work, Environment & Health 11(4): 271-80. 1985.
    Brindley, C., Gescher, A. and Ross, D. "Studies of the metabolism of dimethylformamide in mice." Chemico-Biological Interactions. 45(3): 387-92. 1983.
    Calabrese, E. J. "Multiple Chemical Interactions." Lewis Publishers, Chelsea, MI, USA. 1991.
    Cassee, F. R., Groten, J. P., van Bladeren, P. J. and Feron, V. J. "Toxicological evaluation and risk assessment of chemical mixtures." Critical Reviews in Toxicology. 28(1): 73-101. 1998.
    Chang, H. Y., Shih, T. S., Cheng, C. C., Tasi, C. Y., Lai, J. S. and Wang, V. S. "The effects of co-exposure to methyl ethyl ketone on the biological monitoring of occupational exposure to N,N-dimethylformamide." International Archives of Occupational & Environmental Health 76: 121-128. 2003.
    Chang, H. Y., Shih, T. S., Guo, Y. L., Tasi, C. Y. and Hsu, P. C. "Sperm Function in Workers Exposed to N,N-Dimethylformamide in Synthetic Leather Industry." Fertility and Sterility 81(6): 1589-94. 2004a.
    Chang, H. Y., Tsai, C. Y., Lin, Y. Q., Shih, T. S. and Lin, Y. C. "Urinary biomarkers of occupational N,N-dimethylformamide (DMF) exposure attributed to dermal exposure." Journal of exposure analysis and environmental epidemiology 14: 214-21. 2004b.
    Cheng, R. I. "Multicompound analytical method in PU artificial leather factory." Institute of Occupational Safety and Health (IOSH) annual report. 1999.
    Chieli, E., Saviozzi, M., Menicagli, S., Branca, T. and Gervasi, P. G. "Hepatotoxicity and P-4502E1-dependent metabolic oxidation of N,N-dimethylformamide in rats and mice." Archives of Toxicology 69(3): 165-70. 1995.
    Chivers, C. P. "Disulfiram effect from inhalation of dimethylformamide." Lancet 1(8059): 11. 1978.
    Cox, N. H. and Mustchin, C. P. "Prolonged spontaneous and alcohol-induced flushing due to the solvent dimethylformamide." Contact Dermatitis 24(1): 69-70. 1991.
    Deutsche and Forschungsgemeinschaft "Maximale Arbeitsplatzkonezentrationen und biologische Arbeitsstofftoleranzwerte." Mitteilung 33, Senatskommission zur Prufunggesundheitsschadlicher Arbeitsstoffe. Wiley-VCH, Weinheim, Germany. 2000.
    Dietz, F. K., Rodriguez-Giaxola, M., Traiger, G. J., Stella, V. J. and Himmelstein, K. J. "Pharmacokinetics of 2-butanol and its metabolites in the rat." Journal of Pharmacokinetics & Biopharmaceutics. 9(5): 553-76. 1981.
    DiVincenzo, G. D., Kaplan, C. J. and Dedinas, J. "Characterization of the metabolites of methyl n-butyl ketone, methyl iso-butyl ketone, and methyl ethyl ketone in guinea pig serum and their clearance." Toxicology & Applied Pharmacology. 36(3): 511-22. 1976.
    Echeverria, D., Fine, L., Langolf, G., Schork, T. and Sampaio, C. "Acute behavioural comparisons of toluene and ethanol in human subjects." British Journal of Industrial Medicine 48(11): 750-61. 1991.
    Fail, P. A., George, J. D., Grizzle, T. B. and Heindel, J. J. "Formamide and dimethylformamide: reproductive assessment by continuous breeding in mice." Reproductive Toxicology 12(3): 317-32. 1998.
    Feron, V. J., Cassee, F. R., Groten, J. P., van Vliet, P. W. and van Zorge, J. A. "International issues on human health effects of exposure to chemical mixtures." Environmental Health Perspectives. 110(Suppl 6): 893-9. 2002.
    Fiorito, A., Larese, F., Molinari, S. and Zanin, T. "Liver function alterations in synthetic leather workers exposed to dimethylformamide." American Journal of Industrial Medicine. 32(3): 255-60. 1997.
    Haddad, S., Charest-Tardif, G., Tardif, R. and Krishnan, K. "Validation of a physiological modeling framework for simulating the toxicokinetics of chemicals in mixtures." Toxicology & Applied Pharmacology. 167(3): 199-209. 2000.
    Haddad, S., Pelekis, M. and Krishnan, K. "A methodology for solving physiologically based pharmacokinetic models without the use of simulation softwares." Toxicology Letters. 85(2): 113-26. 1996.
    Haddad, S., Tardif, R., Charest-Tardif, G. and Krishnan, K. "Physiological modeling of the toxicokinetic interactions in a quaternary mixture of aromatic hydrocarbons." Toxicology & Applied Pharmacology. 161(3): 249-57. 1999.
    Hansen, E. and Meyer, O. "Embryotoxicity and teratogenicity study in rats dosed epicutaneously with dimethylformamide (DMF)." Journal of Applied Toxicology 10(5): 333-8. 1990.
    Henry, R. J., Cannon, D. C. and Winkleman, J. W. "Automated determination of serum and urine creatinine." In: Henry RJ, Cannon DC, and Winkleman RJ. Eds. Clinical Chemistry, Principles and Technics New York, Harper and Row: 552-555. 1974.
    Kafferlein, H. U. and Angerer, J. "Simultaneous determination of two human urinary metabolites of N,N-dimethylformamide using gas chromatography-thermionic sensitive detection with mass spectrometric confirmation." Journal of Chromatography. B, Biomedical Sciences & Applications. 734(2): 285-98. 1999.
    Kafferlein, H. U., Goen, T., Muller, J., Wrbitzky, R. and Angerer, J. "Biological monitoring of workers exposed to N,N-dimethylformamide in the synthetic fibre industry." International Archives of Occupational & Environmental Health. 73(2): 113-20. 2000.
    Kawai, T., Yasugi, T., Mizunuma, K., Watanabe, T., Cai, S. X., Huang, M. Y., Xi, L. Q., Qu, J. B., Yao, B. Z. and Ikeda, M. "Occupational dimethylformamide exposure. 2. Monomethylformamide excretion in urine after occupational dimethylformamide exposure." International Archives of Occupational & Environmental Health 63(7): 455-60. 1992.
    Kestell, P., Gill, M. H., Threadgill, M. D., Gescher, A., Howarth, O. W. and Curzon, E. H. "Identification by proton NMR of N-(hydroxymethyl)-N-methylformamide as the major urinary metabolite of N,N-dimethylformamide in mice." Life Sciences. 38(8): 719-24. 1986.
    Kim, H., Wang, R. S., Elovaara, E., Raunio, H., Pelkonen, O., Aoyama, T., Vainio, H. and Nakajima, T. "Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes." Xenobiotica. 27(7): 657-65. 1997.
    Kim, H. A., Kim, K., Heo, Y., Lee, S. H. and Choi, H. C. "Biological monitoring of workers exposed to N, N-dimethylformamide
    in synthetic leather manufacturing factories in Korea." International Archives of Occupational & Environmental Health 77: 108-12. 2004.
    Lareo, A. C. and Perbellini, L. "Biological monitoring of workers exposed to N-N-dimethylformamide. II. Dimethylformamide and its metabolites in urine of exposed workers." International Archives of Occupational & Environmental Health. 67(1): 47-52. 1995.
    Lauwerys, R. R., Kivits, A., Lhoir, M., Rigolet, P., Houbeau, D., Buchet, J. P. and Roels, H. A. "Biological surveillance of workers exposed to dimethylformamide and the influence of skin protection on its percutaneous absorption." International Archives of Occupational & Environmental Health. 45(3): 189-203. 1980.
    Liira, J., Johanson, G. and Riihimaki, V. "Dose-dependent kinetics of inhaled methylethylketone in man." Toxicology Letters 50(2-3): 195-201. 1990a.
    Liira, J., Riihimaki, V. and Engstrom, K. "Effects of ethanol on the kinetics of methyl ethyl ketone in man." British Journal of Industrial Medicine 47(5): 235-30. 1990b.
    Liira, J., Riihimaki, V., Engstrom, K. and Pfaffli, P. "Coexposure of man to m-xylene and methyl ethyl ketone. Kinetics and metabolism." Scandinavian Journal of Work, Environment & Health. 14(5): 322-7. 1988.
    Loizou, G. D. "The application of physiologically based pharmacokinetic modelling in the analysis of occupational exposure to perchloroethylene." Toxicology Letters. 124(1-3): 59-69. 2001.
    Lyle, W. H., Spence, T. W., McKinneley, W. M. and Duckers, K. "Dimethylformamide and alcohol intolerance." British Journal of Industrial Medicine 36(1): 63-6. 1979.
    Maxfield, M. E., Barnes, J. R., Azar, A. and Trochimowicz, H. T. "Urinary excretion of metabolite following experimental human exposures to DMF or to DMAC." Journal of Occupational Medicine. 17(8): 506-11. 1975.
    Morata, T. C., Fiorini, A. C., Fischer, F. M., Colacioppo, S., Wallingford, K. M., Krieg, E. F., Dunn, D. E., Gozzoli, L., Padrao, M. A. and Cesar, C. L. "Toluene-induced hearing loss among rotogravure printing workers." Scandinavian Journal of Work, Environment & Health 23(4): 289-98. 1997.
    Mraz, J., Jheeta, P., Gescher, A., Hyland, R., Thummel, K. and Threadgill, M. D. "Investigation of the mechanistic basis of N,N-dimethylformamide toxicity. Metabolism of N,N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1." Chemical Research in Toxicology. 6(2): 197-207. 1993.
    Mraz, J. and Nohova, H. "Absorption, metabolism and elimination of N,N-dimethylformamide in humans." International Archives of Occupational & Environmental Health. 64(2): 85-92. 1992a.
    Mraz, J. and Nohova, H. "Percutaneous absorption of N,N-dimethylformamide in humans." International Archives of Occupational & Environmental Health. 64(2): 79-83. 1992b.
    Nomiyama, T., Nakashima, H., Chen, L. L., Tanaka, S., Miyauchi, H., Yamauchi, T., Sakurai, H. and Omae, K. "N,N-dimethylformamide: significance of dermal absorption and adjustment method for urinary N-methylformamide concentration as a biological exposure item." International Archives of Occupational & Environmental Health. 74(3): 224-8. 2001.
    Perbellini, L., Brugnone, F., Mozzo, P., Cocheo, V. and Caretta, D. "Methyl ethyl ketone exposure in industrial workers. Uptake and kinetics." International Archives of Occupational & Environmental Health 54(1): 73-81. 1984.
    Perbellini, L., Maestri, L., Veronese, N., Romani, S. and Brugnone, F. "Analysis of urinary N-acetyl-S-(N-methylcarbamoyl)cysteine, the mercapturic acid derived from N,N-dimethylformamide." Journal of Chromatography. B, Biomedical Sciences & Applications. 759(2): 349-54. 2001.
    Rosenberg, J., Fiserova-Bergerova, V. and Lowry, L. K. "Measurements in urine. In: Biological exposure indices committee, editors . Topics in Biological Monitoring." American Conference of Governmental Industrial Hygienists (ACGIH), Cincinnati, OH, USA: 25-32. 1995.
    Scailteur, V., de Hoffmann, E., Buchet, J. P. and Lauwerys, R. "Study on in vivo and in vitro metabolism of dimethylformamide in male and female rats." Toxicology. 29(3): 221-34. 1984.
    Schar, H. P., Holzmann, W., Ramos Tombo, G. M. and Ghisalba, O. "Purification and characterization of N,N-dimethylformamidase from Pseudomonas DMF 3/3." European Journal of Biochemistry. 158(3): 469-75. 1986.
    Shibata, E., Johanson, G., Lof, A., Ernstgard, L., Gullstrand, E. and Sigvardsson, K. "Changes in n-hexane toxicokinetics in short-term single exposure due to co-exposure to methyl ethyl ketone in volunteers." International Archives of Occupational & Environmental Health 75(6): 399-405. 2002.
    SRC "KowWin Database." 3.10. 2002.
    Tardif, R., Charest-Tardif, G., Brodeur, J. and Krishnan, K. "Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans." Toxicology & Applied Pharmacology. 144(1): 120-34. 1997.
    Tassaneeyakul, W., Birkett, D. J., Edwards, J. W., Veronese, M. E., Tukey, R. H. and Miners, J. O. "Human cytochrome P450 isoform specificity in the regioselective metabolism of toluene and o-, m- and p-xylene." Journal of Pharmacology & Experimental Therapeutics. 276(1): 101-8. 1996.
    Thrall, K. D., Soelberg, J. J., Weitz, K. K. and Woodstock, A. D. "Development of a physiologically based pharmacokinetic model for methyl ethyl ketone in F344 rats." Journal of Toxicology & Environmental Health Part A. 65(13): 881-96. 2002.
    Uaki, H., Kawai, T., Mizunuma, K., Moon, C. S., Zhang, Z. W., Inui, S., Takada, S. and Ikeda, M. "Dose-dependent suppression of toluene metabolism by isopropyl alcohol and methyl ethyl ketone after experimental exposure of rats." Toxicology Letters. 81(2-3): 229-34. 1995.
    Wrbitzky, R. "Liver function in workers exposed to N,N-dimethylformamide during the production of synthetic textiles." International Archives of Occupational & Environmental Health 72(1): 19-25. 1999.
    Wrbitzky, R. and Angerer, J. "N,N-dimethylformamide--influence of working conditions and skin penetration on the internal exposure of workers in synthetic textile production." International Archives of Occupational & Environmental Health. 71(5): 309-16. 1998.
    Yang, J. S., Kim, E. A., Lee, M. Y., Park, I. J. and Kang, S. K. "Biological monitoring of occupational exposure to N,N-dimethylformamide--the effects of co-exposure to toluene or dermal exposure." International Archives of Occupational & Environmental Health 73(7): 463-70. 2000.
    行政院勞工委員會勞工安全衛生研究所 “作業環境勞工化學性暴露調查計畫(一)”,IOSH87 -A101:10. 民國八十七年
    周瑞淑、石東生、黃文玉、沈晏如、戰洪、陳繼明 “丁酮暴露生物偵測技術研究”, 勞工安全衛生研究季刊目錄,六卷三期 民國87年9月
    朱祐民 “應用跟暴露方式探討人造皮工廠暴露環境下N,N-dimethylformamide (DMF) 不同暴露途徑之生物偵測” 成功大學環境醫學研究碩士論文 2003

    下載圖示 校內:立即公開
    校外:2004-07-13公開
    QR CODE