簡易檢索 / 詳目顯示

研究生: 張景鈞
Chang, Ching-Chun
論文名稱: 銅/氮化鉭/介電質多層系統界面穩定性之研究
Investigation on the Interfacial Stability of Copper/Tantalum Nitride/Dielectrics Multilayered Systems
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 140
中文關鍵詞: 擴散阻障層低介電材料氮化鉭
外文關鍵詞: diffusion barrier, Cu, FSG, OSG, TaN, dielectric
相關次數: 點閱:102下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探討使用氮化鉭薄膜作為擴散阻障層材料,並應用於銅連接導線製程中,與低介電常數絕緣層間之熱反應性質研究。所使用的氮化鉭薄膜分別是初鍍時為非晶質相的TaNx~0.5及Ta : N元素成1:1計量比之多晶結構TaN薄膜,而所使用的低介電常數材料則包括含氟二氧化矽(FSG)及含碳二氧化矽(OSG)。吾人首先觀察並比較銅/氮化鉭/介電薄膜(Cu/Ta-N/Ta/dielectric layer)結構在經過不同溫度的真空退火處理前後之性質變化,利用四點探針量測各試片在退火處理前後的片電阻值,並以θ-2θ X光繞射儀、低掠角X光繞射儀、掃描式電子顯微鏡及穿透式電子顯微鏡觀察試片的微結構變化,同時,也利用歐傑能譜分析儀、拉賽福背向散射分析儀及二次離子質譜儀分析試片中各元素的縱深分佈狀況,以評估銅原子的擴散行為、氮化鉭薄膜的阻障能力及低介電常數薄膜的熱穩定性。而後,再對低介電常數薄膜進行性質分析,用以闡明介電薄膜的特性對多層結構試片進行退火處理後的性質之影響,包括以熱脫附常壓質譜儀量測介電薄膜的釋氣現象,以X光光電子能譜儀及傅立葉轉換紅外線光譜儀分析薄膜的鍵結型態,最後,針對介電薄膜進行電性分析,量測經過不同方法進行前處理之介電薄膜之電容-電壓(C-V)曲線及漏電流密度-電場(J-E)曲線,以瞭解介電薄膜的介電常數及漏電流密度變化趨勢。
    實驗結果顯示,初鍍為非晶質相的TaNx~0.5薄膜,在真空退火處理溫度達到800 oC時,仍能表現出較TaN為佳的抗銅及氟元素擴散的能力。然而在更高的退火處理溫度時,由於TaNx~0.5晶粒急劇成長所引起的拉伸應力將造成TaNx~0.5薄膜出現破孔,引起試片的嚴重劣化。若將Cu/Ta-N/Ta多層薄膜鍍製於未經任何前處理的FSG介電層之上,在經過400 oC的真空退火處理後,試片表面會出現許多氣泡狀的突起,以OSG作為介電層材料時則無此現象。此和FSG所吸附大量的水氣釋放時所引起的應力有關。
    經由Cu/Ta-N/Ta/FSG(OSG)/<Si>試片退火處理前後的截面觀察分析,可發現在退火處理之後,Ta/FSG界面處附著性不佳,甚且會有氣泡狀的空孔出現在Ta薄膜的下方,此乃是由於FSG薄膜受熱之後的釋氣現象所造成。經由XPS對此Ta/FSG界面進行分析,則可觀察到Ta-F化合物的生成,這也是造成界面附著強度降低的原因之ㄧ。
    FSG及OSG薄膜在氮氣氛保護下進行400 oC、30分鐘的預先熱處理後的性質分析結果顯示,此預先熱處理步驟對這兩種低介電常數薄膜皆有穩定化的效果,FSG薄膜尤其明顯。兩者在預先熱處理過程中皆能夠將所吸附的水氣有效地釋放出,FSG薄膜中一些較不穩定的Si-F鍵結也能夠經由此一程序去除,避免了在後續熱處理步驟時釋出的氟可能和上層鉭金屬層產生的反應。FSG在真空退火處理60分鐘之後,其介電常數值會低於初鍍時之量測值,經由光學模擬分析的結果可知,FSG薄膜在熱處理之後密度變低,可能是由於氟元素的釋出及結構上的變化導致。此外,雖然一般咸認為OSG薄膜的機械性質不佳,然而其熱脫附分析的結果顯示OSG薄膜的熱穩定性極為優良,在升溫達到400 oC以上時,才會有極微量的CH3+脫附訊號被偵測出。
    本研究的結果顯示,初鍍非晶質相的TaNx~0.5薄膜具有較良好的銅擴散阻障性質。然而當其運用在未經前處理之FSG介電薄膜上時,將會因為和介電層中所釋出的氟及水氣反應,造成劣化的效應,使其阻障效果及結構完整性大幅減低。而TaNx~0.5配合經過預先熱處理的FSG或是OSG薄膜時則無附著性或是結構劣化的問題。因此,為了獲得較佳的元件可靠度及效能,在鍍製金屬薄膜於FSG介電層之前對介電材料進行預先熱處理為一重要的步驟。

    In this study, the characteristics of various Cu/Ta-N/dielectric /<Si> structures before and after heat treatment were explored. Dielectric materials with low dielectric constants used in this study were fluorinated silicate glass (FSG) and organosilicate glass (OSG). The FSG and OSG films were deposited onto silicon wafers in a single-wafer CVD chamber. Ta, Ta-N and Cu layers were then deposited sequentially on the dielectric layers by magnetron sputtering. The Ta-N films prepared with 1% and 5% of nitrogen flow ratio (N2/(N2+Ar)) are amorphous TaNx~0.5 and polycrystalline TaN, respectively. After deposition, all the specimens were annealed in vacuum at various temperatures for 60 min to investigate their thermal interactions.
    The experimental results indicate that the ability of the amorphous TaNx~0.5 film, to prevent copper and fluorine from diffusing, is superior to that of the polycrystalline TaN upon annealing at 800 oC in vacuum. However, TaNx~0.5 film degrades seriously after annealing at 900 oC. It is caused by the tensile stress produced as the Ta2N grains grow. On the other hand, bubble-like topography was observed on the surfaces of the Cu/Ta-N/Ta multilayers deposited on FSG but not seen for the multilayers deposited on OSG. It should be attributed to the significant stress produced by the release of moisture from the FSG film.
    The cross-sectional TEM bright-field micrographs of the Cu/TaNx~0.5/Ta/FSG/ <Si> show that voids were formed at the interface between TaNx~0.5/Ta bi-layer and FSG film after post metallization annealing. It is caused by the evolution of moisture from the FSG film. The formation of tantalum fluoride, lowering the adhesion strength of the Ta/FSG interfaces, can be observed by using X-ray photoelectron spectroscopy. The experimental results show that both of FSG and OSG are “stabilized” by pre-baking treatment (400 oC/30 min, in N2) before metallization. It means that the unstable Si-F bonds in the FSG film can be eliminated by thermal treatment.
    It is noticed that the dielectric constant of FSG film will decrease after annealing at 400 oC in vacuum for 60 min. By comparing the k values of as-prepared FSG with/without water-soaking treatment, it is clear that the main factor altering the k values of FSG is the moisture content. Pre-baking (400 oC in N2 ambient for 30 min) treatment is effective to drive the moisture out of the dielectrics and the water-soaking process brings the moisture back. Nevertheless, the 400 oC/60 min annealing further reduces the k values to be even lower than that of as-deposited FSG. It may be due to the loss of fluorine and/or the instability of the FSG structure. Therefore, the further reduction in the dielectric constant of the 400 oC/60 min-annealed FSG films is attributed to the decrease in the film density of the FSG dielectric layers upon annealing. On the other hand, the OSG possesses better water resistance and thermal stability. The functional groups incorporated in the OSG film will not be released upon annealing to 400 oC.
    In summary, this study investigates the influences of the moisture and unstable fluorine in the FSG dielectric layer on the integrity of the Cu/Ta-N/Ta/FSG/<Si> multilayer structure. In comparison, the specimens with the Cu/Ta-N/Ta/OSG/<Si> structure were also investigated. The results indicate that the moisture absorbed in the FSG film increases the dielectric constant drastically. Furthermore, leakage current density of the FSG dielectric layer is affected by the moisture content in the dielectric layer, too. This study shows that the outgassing from dielectrics might deteriorate the performance of the IC devices. Therefore, baking the FSG dielectric adequately prior to the subsequent metallization is essential.

    第1章 前言與研究目的 1 1-1 前言 1 1-2 研究目的 7 第2章 理論基礎 9 2-1 積體電路的發展 9 2-1.1 銅鑲嵌製程(Damascene process) 11 2-2 低介電常數材料 16 2-3 氮化鉭擴散阻障層 26 第3章 實驗方法與步驟 28 3-1 實驗材料 28 3-1.1 靶材(Sputtering target) 28 3-1.2 基材(Substrate) 28 3-1.3 濺鍍及退火使用氣體(Gas ambient) 28 3-1.4 實驗使用之相關藥品 29 3-2 實驗設備 30 3-2.1 薄膜濺鍍系統 (sputtering system) 30 3-2.2 熱處理系統(Thermal treatment system) 32 3-3 薄膜製備 33 3-3.1 銅薄膜製備 33 3-3.2 氮化鉭薄膜製備 34 3-3.3 介電薄膜製備 35 3-4 試片前處理 36 3-4.1 預先熱處理(Pre-baking treatment) 36 3-4.2 水吸附處理(Water-soaking treatment) 36 3-4.3 銅蝕刻處理(Cu-etching treatment) 36 3-5 實驗流程 37 3-6 分析儀器 39 3-6.1 四點探針(Four point probe) 39 3-6.2 表面輪廓儀(Stylus profilometry) 40 3-6.3 X光繞射儀(X-ray diffraction, XRD) 41 3-6.4 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 42 3-6.5 Scotch tape test 42 3-6.6 歐傑電子能譜儀(Auger electron spectroscopy) 43 3-6.7 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 44 3-6.8 拉賽福背向散射分析儀(Rutherford backscattering spectrometry,RBS) 45 3-6.9 熱脫附常壓質譜儀(Thermal desorption spectroscopy, TDS) 46 3-6.10 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 47 3-6.11 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 47 3-6.12 二次離子質譜儀(Secondary ion mass spectrometer, SIMS) 48 3-6.13 橢圓偏光儀(Ellipsometry) 48 3-6.14 介電常數及漏電流密度量測 49 第4章 結果與討論 51 4-1 氮化鉭薄膜性質 51 4-2 氮化鉭薄膜應用於Cu/FSG系統之性質分析 54 4-2.1 Cu/Ta-N/Ta/ FSG*/<Si>結構於真空退火後的片電阻變化 54 4-2.2 Cu/Ta-N/Ta/FSG*/<Si>結構於真空退火後的表面形態差異 57 4-2.3 Cu/Ta-N/Ta/FSG*/<Si>結構於高溫退火後的縱深元素分佈變化 61 4-2.4 Cu/Ta-N/Ta/FSG*/<Si>結構於真空退火後的結晶結構變化 64 4-2.5 Cu/Ta-N/Ta/FSG*/<Si>結構的劣化機制探討 68 4-3 超薄氮化鉭薄膜應用於低介電常數材料上的特性研究 73 4-3.1 超薄氮化鉭薄膜之Cu/Ta-N/Ta/FSGo(OSGo)/<Si>試片於真空退火處理後 之片電阻值變化 73 4-3.2 超薄氮化鉭薄膜之Cu/Ta-N/Ta/FSGo(OSGo)/<Si>於真空退火後的表面形 態差異 76 4-3.3 低介電常數材料的釋氣現象及其影響 79 4-3.4 超薄氮化鉭薄膜之(Cu)/Ta-N/Ta/FSGo/<Si>的界面鍵結型態分析 86 4-3.5 超薄氮化鉭薄膜之Cu/Ta-N/Ta/FSGo/<Si>結構的AES縱深元素分佈變化 89 4-4 Cu/Ta-N/Ta/FSGo/<Si>試片表面產生氣泡狀突起的原因及預先熱處理對 其結構完整性的影響 92 4-5 熱處理對FSG及OSG低介電材料之材料特性影響 96 4-5.1 預先熱處理對FSG及OSG熱脫附性質的影響 98 4-5.2 預先熱處理對FSG薄膜中原子鍵結的影響 103 4-5.3 以二次離子質譜儀觀察(Cu)/TaNx~0.5/Ta/FSGo(FSG*)/<Si>試片在退火 前後氟元素的縱深分佈變化 114 4-5.4 以RBS觀察Cu/TaNx~0.5/Ta/FSGo(FSG*)/<Si>試片在退火前後的元素縱 深分佈變化 116 4-5.5 熱處理對FSG薄膜之電性表現的影響 118 第5章 結論 125

    1.National Technology Roadmap for Semiconductor, 1997 edition, Semiconductor
    Industry Association.
    2.S. P. Murarka, I. V. Verner, and R. J. Gutmann, Copper-Fundamental
    Mechanisms for Microelectronic Applications, (John Wiley & Sons, USA, 2000),
    p. 6.
    3.D. A. Neamen, Semiconductor Physics & Devices: Basic Principles, 2nd ed.,
    (McGraw-Hill, USA, 1997), p. 590.
    4.S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros and W. A. Lanford, Advanced
    multilayer metallization schemes with copper as interconnection metal, Thin
    Solid Films 236, 257 (1993).
    5.C. W. Park and R. W. Vook, Activation energy for electromigration in Cu
    films, Appl. Phys. Lett. 59, 175 (1991).
    6.J. D. McBrayer, R. M. Swanson, and Y. W. Sigmon, Diffusion of metals in
    silicon dioxide, J. Electrochem. Soc. 133, 1242 (1986).
    7.S. Q. Hong, C. M. Comrie, S. W. Russell, and J. W. Mayer, Phase Formation in
    Cu-Si and Cu-Ge, J. Appl. Phys. 70, 3655 (1992).
    8.A. Broniatowski, Multicarrier trapping by copper microprecepitates in
    silicon, Phys. Rev. Lett. 62, 3074 (1989).
    9.A. S. Oates, F. Nkansah, and S. Chittipeddi, Electromigration-induced drift
    failure of via contacts in multilevel metallization, J. Appl. Phys. 72, 2227
    (1992).
    10.J. S. Chun, P. Desjardins, C. Lavoie, I. Petrov, C. Cabral, and J. E.
    Greene, Interfacial reaction pathways and kinetics during annealing of 111-
    textured Al-TiN bilayers: A synchrotron x-ray diffraction and transmission
    electron microscopy study, J. Vac. Sci. Technol. A 19, 2207 (2001).
    11.S. H. Kim, K. T. Nam, A. Datta, and K. B. Kim, Failure mechanism of a
    multilayer (TiN/Al/TiN) diffusion barrier between copper and silicon, J. Appl. Phys. 92, 5512 (2002).
    12.W. J. Zhang, L. W. Yi, J. N. Tu, P. Y. Chang, D. L. Mao, and J. Wu,
    Roughness and texture correlation of Al films, J. Electron. Mater. 34, 1307
    (2005).
    13.B. S. Kang, S. M. Lee, J. S. Kwak, D. S. Yoon, and H. K. Baik, The
    effectiveness of Ta prepared by ion-assisted deposition as a diffusion
    barrier between copper and silicon, J. Electrochem. Soc. 144, 1807 (1997).
    14.S. Lee, S. H. Yang, H. S. Moon, and J. W. Park, Dielectric constant
    stability and thermal stability of Cu/Ta/SiOF/Si multilayer films, Jpn. J.
    Appl. Phys. 40, 225 (2001).
    15.S. Li, Z. L. Dong, K. M. Latt, H. S. Park, and T. White, Formation of Cu
    diffusion channels in Ta layer of a Cu/Ta/SiO2/Si structure, Appl. Phys.
    Lett. 80, 2296 (2002).
    16.Z. L. Yuan, D. H. Zhang, C. Y. Li, K. Prasad, and C. M. Tan, Thermal
    stability of Cu/alpha-Ta/SiO2/Si structures, Thin Solid Films 462, 284
    (2004).
    17.C. N. Liao and K. M. Liou, Electrical properties of Cu/Ta interfaces under
    electrical current stressing, J. Vac. Sci. Technol. A 23, 359 (2005).
    18.C. Y. Chou and S. W. Chen, Interfacial reactions and phase equilibria in
    the Al-Cu/Ta systems, J. Electron. Mater. 35, 22 (2006).
    19.K. H. Min, K. C. Chun, and K. B. Kim, Comparative study of tantalum and
    tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu
    metallization, J. Vac. Sci. Technol. B 14, 3263 (1996).
    20.G. S. Chen and S. T. Chen, Diffusion barrier properties of single- and
    multilayered quasi-amorphous tantalum nitride thin films against copper
    penetration, J. Appl. Phys. 87, 8473 (2000).
    21.K. M. Latt, Y. K. Lee, S. Li, T. Osopowicz, H. L. Seng, The impact of layer
    thickness of IMP-deposited tantalum nitride films on integrity of
    Cu/TaN/SiO2/Si multilayer structure, Mater. Sci. Eng. B 84, 217 (2001).
    22.C. C. Chang, S. K. JangJian, and J. S. Chen, Dependence of Cu/Ta-N/Ta
    metallization stability on the characteristics of low dielectric constant
    materials, J. Electrochem. Soc. 152, G517 (2005).
    23.M. Kumar, Rajkumar, D. Kumar, and A. K. Paul, Thermal stability of tantalum
    nitride diffusion barriers for Cu metallization formed using plasma
    immersion ion implantation, Microelectron. Eng. 82, 53 (2005).
    24.K. M. Chang, T. H. Yeh, I. C. Deng, and C. W. Shin, Amorphouslike chemical
    vapor deposited tungsten diffusion barrier for copper metallization and
    effects of nitrogen addition, J. Appl. Phys. 82, 1469 (1997).
    25.J. E. Kelsey, C. Goldberg, G. Nuesca, G. Peterson, A. E. Kaloyeros, and B.
    Arkles, Low temperature metal-organic chemical vapor deposition of tungsten
    nitride as diffusion barrier for copper metallization, J. Vac. Sci.
    Technol. B 17, 1101 (1999).
    26.S. Lee, D. J. Kim, S. H. Yang, J. Park, S. Sohn, K. Oh, T. Y. Kim, J. Y.
    Kim, G. Y. Yeom, and J. W. Park, Thermal stability enhancement of
    Cu/WN/SiOF/Si multilayers by post-plasma treatment of fluorine-doped
    silicon dioxide, J. Appl. Phts. 85, 437 (1999).
    27.B. M. Ekstrom, S. Lee, N. Magtoto, and J. A. Kelber, Cu wetting and
    interfacial stability on clean and nitrided tungsten surfaces, Appl. Surf.
    Sci. 171, 275 (2001).
    28.S. Bystrova, A. A. I. Aarnink, J. Holleman, and R. A. M. Wolters, Atomic
    layer deposition of W1.5N barrier films for Cu metallization, J.
    Electrochem. Soc. 152, G522 (2005).
    29.H. Yanagisawa, K. Sasaki, H. Miyake, and Y. Abe, Single-oriented growth of
    (111) Cu film on thin ZrN/Zr bilayered film for ULSI metallization, Jpn. J.
    Appl. Phys. 39, 5987 (2000).
    30.M. B. Takeyama, A. Noya, K. Sakanishi, Diffusion barrier properties of ZrN
    films in the Cu/Si contact systems, J. Vac. Sci. Technol. B 18, 1333 (2000).
    31.C. S. Chen, C. P. Liu, H. G. Yang, and C. Y. A. Tsao, Influence of the
    preferred orientation and thickness of zirconium nitride films on the
    diffusion property in copper, J. Vac. Sci. Technol. B 22, 1075 (2004).
    32.K. Yoshimoto, S. Shinkai, and K. Sasaki, Application of HfN/Hf bilayered
    film as a diffusion barrier for Cu metallization system of Si large-scale
    integration, Jpn. J. Appl. Phys. 39, 1835 (2000).
    33.M. H. Lin and S. Y. Chiou, Effect of phase formation behavior on thermal
    stability of hafnium-based thin films for copper interconnects, Jpn. J.
    Appl. Phys. 43, 3340 (2004).
    34.K. L. Ou, S. Y. Chiou, M. H. Lin, and R. Q. Hsu, Barrier capability of HfN
    films with various nitrogen concentrations against copper diffusion in
    Cu/Hf-N/n+-p junction diodes, J. Electrochem. Soc. 152, G138 (2005).
    35.S. Joseph, M. Eizenberg, C. Marcadal, and L. Chen, TiSiN films produced by
    chemical vapor deposition as diffusion barriers for Cu metallization, J.
    Vac. Sci. Technol. B 20, 1471 (2002).
    36.M. Nose, Y. Deguchi, T. Mae, E. Honbo, T. Nagae, and K. Nogi, Influence of
    sputtering conditions on the structure and properties of Ti-Si-N thin films
    prepared by r.f.-reactive sputtering, Surf. Coat. Technol. 174, 261 (2003).
    37.Y. C. Ee, Z. Chen, S. Xu, L. Chan, K. H. See, and S. B. Law, Electroless
    copper deposition as a seed layer on TiSiN barrier, J. Vac. Sci. Technol. A
    22, 1852 (2004).
    38.C. L. Lin, S. R. Ku, and M. C. Chen, Reactively sputtered amorphous TaSixNy
    films serving as barrier layer against copper diffusion, Jpn. J. Appl.
    Phys. 40, 4181 (2001).
    39.L. W. Lai, J. S. Chen, and W. S. Hsu, Influence of Ta/Si atomic ratio on
    the interdiffusion between Ta-Si-N and Cu at elevated temperature, J. Appl.
    Phys. 94, 5396 (2003).
    40.R. Hubner, M. Hecker, N. Mattern, A. Voss, J. Acker, V. Hoffmann, K.
    Wetzig, H. J. Engelmann, E. Zschech, H. Heuer, and C. Wenzel, Influence of
    nitrogen content on the crystallization behavior of thin Ta-Si-N diffusion
    barriers, Thin Solid Films 468, 183 (2004).
    41.T. Hara and K. Namiki, Effect of TaSiN barrier layer composition on
    resistivity of electroplated copper interconnection layers, Electrochem.
    Solid St. 7, C57 (2004).
    42.顧子琨, “超大型積體電路之銅連接線技術”, 電子月刊5(6), 117 (1999).
    43.International Technology Roadmap for Semiconductor, 2005 ed., Semiconductor
    Industry Association.
    44.W. Koh, D. Kumar, W. M. Li, H. Sprey, I. and J. Raaijmakers, Meeting the
    Cu diffusion barrier challenge using ALD tungsten nitride carbide, Solid
    State Technol. 48, 54 (2005).
    45.J. Liu, J. Bao, M. Scharnberg, W. C. Kim, P. S. Ho, and R. Laxman, Effects
    of surface chemistry on ALD Ta3N5 barrier formation on low-k dielectrics,
    J. Vac. Sci. Technol. A 23, 1107 (2005).
    46.A. Furuya, H. Tsuda, and S. Ogawa, Ta-rich atomic layer deposition TaN
    adhesion layer for Cu interconnects by means of plasma-enhanced atomic
    layer deposition, J. Vac. Sci. Technol. B 23, 979 (2005).
    47.W. F. A. Besling, X. Federspiel, T. Vanypre, and J. Torres, Copper alloy
    seed integration for reliability improvement, Microelectron. Eng. 82, 254
    (2005).
    48.H. Kim, The application of atomic layer deposition for metallization of 65
    nm and beyond, Surf. Coat. Technol. 200, 3104 (2006).
    49.S. W. Lim, Y. Shimogaki, Y. Nakano, and K. Tada, Preparation of low
    dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor
    deposition, Appl. Phys. Lett. 68, 832 (1996).
    50.S. M. Han and E. Aydil, Structure and chemical composition of fluorinated
    SiO2 films deposited using SiF4/O2 plasmas, J. Vac. Sci. Technol. A 15,
    2893 (1997).
    51.M. J. Loboda, New solutions for intermetal dielectrics using
    trimethylsilane-based PECVD processes, Microelectron. Eng. 50, 15 (2000).
    52.B. D. Hatton, K. Landskron, W. J. Hunks, M. R. Bennett, D. Shukaris, D. D.
    Perovic, and G. A. Ozin., Materials chemistry for low-k materials,
    Materialstoday 9, 22 (2006).
    53.J. Davis, TSMC: Move to 65nm more challenging than to 90nm, Electronic
    News, April (2005).
    54.B. Zhao and M. Brongo, Integration of low dielectric constant materials in
    advanced aluminum and copper interconnects, Mat. Res. Soc.Symp. Proc. 565,
    137 (1999).
    55.B. Zhao, S. W. Wang, S. Anderson, R. Lam, M. Fiebig, P. K. Vasudev, and T.
    E. Seidel, On advanced interconnect using low dielectric constant materials
    as inter-level dielectrics, Mat. Res. Soc.Symp. Proc. 427, 415 (1996).
    56.J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology,
    (Prentice Hall, New Jersey, 2000).
    57.C. Y. Chang and S. M. Sze, ULSI Technology, (McGraw-Hill, Singapore, 1996).
    58.蕭宏  (羅正忠, 張鼎張 譯),半導體製程技術導論, 第二版, (台灣培生教育出版, 2005).
    59.P. S. Ho, J. Leu, and W. W. Lee, Low Dielectric Constant Materials for IC
    Applications, (Springer, Germany, 2003).
    60.H. Treichel, G. Ruhl, P. Ansmann, R. Wrl, Ch. Mller, and M. Dietlmeier,
    Low dielectric constant materials for interlayer dielectric, Microelectron.
    Eng. 40, 1 (1998).
    61.Hatanaka, Y. Mizushima, O. Hataishi, and Y. Furumara, H2O-TEOS plasma-CVD relizing dielectrics having a smooth surface, Proc. IEEE VLSI Multilevel Interconnection Conf., 435 (1991).
    62.K. Machida and H. Oikawa, SiO2 planarization technology with biasing and
    electron cyclotron resonance plasma deposition for submicron
    interconnections, J. Vac. Sci. Technol. B 4, 818 (1986).
    63.O. A. Popov and H. Waldron, Electron cyclotron resonance plasma stream
    source for plasma enhanced chemical vapor deposition, J. Vac. Sci. Technol.
    A 7, 914 (1989).
    64.T. V. Herak, T. T. Chau, D. J. Thomson, and S. R. Mejia, Low-temperature
    deposition of silicon dioxide films from electron cyclotron resonant
    microwave plasmas, J. Appl. Phys. 65, 2457 (1989).
    65.T. Homma, Fluorinated SiO2 films for interlayer dielectrics in quarter-
    micron ULSI multiplayer interconnects, Mat. Res. Soc. Symp. Proc. 381, 239 (1995).
    66.W. S. Yoo, R. Swope, B. Sparks, and D. Mordo, Comparison of C2F6 and FASi-4 as fluorine dopant sources in plasma enhanced chemical vapor deposition
    fluorinated silica glass films, J. Mater. Res. 12, 70 (1997).
    67.S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, and H. Komiyama, Changes in
    orientational polarization and structure of silicon dioxide film by
    fluorine addition, J. Electrochem. Soc. 146, 4196 (1999).
    68.Q. Wu and K. K. Gleason, Plasma-enhanced chemical vapor deposition of low-k
    dielectric films using methylsilane, dimethylsilane, and trimethylsilane
    precursors, J. Vac. Sci. Technol. A 21, 388 (2003).
    69.M. J. Loboda, New solutions for intermetal dielectrics using
    trimethylsilane-based PECVD processes, Microelectron. Eng. 50, 15 (2000).
    70.V. Ligatchev, T. K. S. Wong, B. Liu, and Rusli, Atomic structure and defect
    densities in low dielectric constant carbon doped hydrogenated silicon
    oxide films, deposited by plasma-enhanced chemical vapor deposition, J.
    Appl. Phys. 92, 4605 (2002).
    71.P. Gonon, A. Sylvestre, H. Meynen, and L. Van Cotthem, Permittivity and
    Conductivity of Low-Dielectric-Constant SiOC:H Films Deposited by Plasma-
    Enhanced Chemical Vapor Deposition, J. Electrochem. Soc. 150, F47 (2003).
    72.A. Nara and H. Itoh, Low dielectric constant insulator formed by downstream
    plasma CVD at room temperature using TMS/O2, Jpn. J. Appl. Phys. Part 1 36,
    1477 (1997).
    73.A. Grill and A. Patel, Low dielectric constant films prepared by plasma-
    enhanced chemical vapor deposition from tetramethylsilane, J. Appl. Phys.
    85, 3314 (1999).
    74.J. H. Zhao, I. Malik, T. Ryan, E. T. Ogawa and P.S. Ho, Thermomechanical
    properties and moisture uptake characteristics of hydrogen silsesquioxane
    submicron films, Appl. Phys.Lett. 74, 944 (1999).
    75.M. T. Wang, Y. C. Lin, and M. C. Chen, Barrier properties of very thin Ta
    and TaN layers against copper diffusion, J. Electrochem. Soc. 145, 2538
    (1998).
    76.K. Holloway, and P. M. Fryer, Tantalum as a diffusion barrier between
    copper and silicon, Appl. Phys. Lett. 57, 1736 (1990).
    77.J. H. Wang, L. J. Chen, Z. C. Lu, C. S. Hsiung, W. Y. Hsieh, and T. R. Yew,
    Ta and Ta-N diffusion barriers sputtered with various N2/Ar ratios for Cu
    metallization, J. Vac. Sci. Technol. B 20, 1522 (2002).
    78.K. Hieber, Structural and electrical properties of Ta and Ta nitrides
    deposited by chemical vapor deposition, Thin Solid Films 24, 157 (1974).
    79.C. C. Chang, J. S. Chen, and W. S. Hsu, Failure mechanism of amorphous and
    crystalline Ta-N films in the Cu/Ta-N/Ta/SiO2 structure, J. Electrochem.
    Soc. 151, G746 (2004).
    80.D. Edelstei, C. Uzoh, C. Cabral, Jr., P. DeHaven, P. Buchwalter, A. Simon,
    E. Cooney, S. Malhotra, D. Klaus, H. Rathore, B. Agarwala, and D. Nguyen, A
    high performance liner for copper damascene interconnects, Proceedings of
    IEEE International Interconnect Technology Conference, (Piscataway, NJ,
    2001), p. 9.
    81.D. K. Schroder, Semiconductor Material and Device Characterization, 2nd
    ed., (John Wiley & Sons, Arizona, 1998).
    82.R. E. Lee, Scanning Electron Microscopy and X-ray Microanalysis, (PTR
    Prentice-Hall, New Jersey, 1998).
    83.A. J. Kinloch, Adhesion and Adhesive, (Chapman and Hall, New York, 1987).
    84.D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd ed, Volume 1-
    Auger and X-ray Photoelectron Spectroscopy, (Wiley, Chichester, 1990).
    85.汪建民(編), 潘扶民(), “第十二章 歐傑電子能譜儀分析”, 材料分析, (中國材料學會, 民國86年).
    86.W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry,
    (Academic, New York, 1978).
    87.潘扶民, “四極質譜儀與表面科學”, 科儀新知13, 33(1991).
    88.D. B. Williams and C. B. Carter, Transmission Electron Microscopy, (Plenum,
    New York, 1996).
    89.H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and
    Reflectonmetry, (Wiley, New Work, 1999).
    90.E. Pelletier, Handbook of Optical Constants of Solids II, E. D. Palik,
    Editor, (Academic, New York, 1991), p.65.
    91.張景鈞, “氮化鉭擴散阻障層的製備與特性研究”, 碩士論文, 國立成功大學 (2001).
    92.Y. K. Lee, K. M. Latt, K. JaeHyung, T. Osipowicz, S. Y. Chiam, K. S. Lee,
    Comparative analysis and study of ionized metal plasma (IMP)-Cu and
    chemical vapor deposition (CVD)-Cu on diffusion barrier properties of IMP-
    TaN on SiO2, Mater. Sci. Eng. B 77, 282 (2000).
    93.M. Lane, R. H. Dauskardt, N. Krishna, L. Hashim, Adhesion and reliability
    of copper interconnects with Ta and TaN barrier layers, J. Mater. Res. 15,
    203 (2000).
    94.B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, (Prentice
    Hall, New Jersey, 2001), 3rd ed., P. 170.
    95.P. Chaudhari, Grain growth and stress relief in thin films, J. Vac. Sci.
    Technol. 9, 520 (1971).
    96.J. C. Chuang and M. C. Chen, Properties of thin Ta–N films reactively
    sputtered on Cu/SiO2/Si substrates, Thin Solid Films 322, 213 (1998).
    97.K. Holloway, P. M. Fryer, C. Cabral, Jr. J. M. E. Harper, P. J. Bailey, and
    K. H. Kelleher, Tantalum as a diffusion barrier between copper and silicon:
    Failure mechanism and effect of nitrogen additions, J. Appl. Phys. 71, 5433
    (1992).
    98.M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, and H. T. Chiu, Comparison
    of the diffusion barrier properties of chemical-vapor-deposited TaN and
    sputtered TaN between Cu and Si, J. Appl. Phys. 79, 6932 (1996).
    99.K. T. Miller, F. F. Lange, and D. B. Marshal, The instability of
    polycrystalline thin films: Experiment and theory, J. Mater. Res. 5, 151
    (1990).
    100.N. Hirashita, S. Tokitoh, and H. Uchida, Thermal desorption and infrared
    studies of plasma-enhanced chemical vapor deposited SiO films with
    tetraethyiorthosilicate, Jpn. J. Appl. Phys. Part 1 32, 1787 (1993).
    101.H. Kudo, R. Shinohara, S. Takeishi, N. Awaji, and M. Yamada, Densified
    SiOF film formation for preventing water absorption, Jpn. J. Appl. Phys.
    Part 1 35, 1583 (1996).
    102.B. Y. Tsui, K. L. Fang, and S. D. Lee, Surface-processing-enhanced copper
    diffusion into fluorosilicate glass, J. Electrochem. Soc. 148, G616 (2001).
    103.M. J. Shapiro, T. Matsuda, S. V. Nguyen, C. Parks, and C. Dziobkowski,
    Fluorine diffusion from fluorosilicate glass, J. Electrochem. Soc. 143,
    L156 (1996).
    104.G. Passemard, P. Fugier, P. Noel, F. Pires, and O. Demolliens, Study of
    fluorine stability in fluoro-silicate glass and effects on dielectric
    properties, Microelectron. Eng. 33, 335 (1997).
    105.G. R. Yang, Y. P. Zhao, B. Wang, E. Barnat, J. McDonald, and T. M. Liu,
    Chemical interactions at Ta/fluorinated polymer buried interfaces, Appl.
    Phys. Lett. 72, 1846 (1998).
    106.Y. S. Kim and Y. Shimogaki, X-ray photoelectron spectroscopic
    characterization of the adhesion behavior of chemical vapor deposited
    copper films, J. Vac. Sci. Technol. A 19, 2642 (2001).
    107.F. Iacopi, Zs. Tkei, Q. T. Le, D. Shamiryan, T. Conard, B. Brijs, U.
    Kreissig, M. Van Hove, and K. Maex, Factors affecting an efficient sealing
    of porous low-k dielectrics by physical vapor deposition Ta(N) thin films,
    J. Appl. Phys. 92, 1548 (2002).
    108.S. H. Yang, H. Kim, and J. W. Park, Effects of plasma treatment on the
    properties of Cu/Ta/fluorinated amorphous carbon (a-C:F)/Si multilayer
    structure, J. Vac. Sci. Technol. A 20, 1769 (2002).
    109.J. P. Chang, H. W. Krautter, W. Zhu, R. L. Opila, and C. S. Pai,
    Integration of fluorinated amorphous carbon as low-dielectric constant
    insulator: Effects of heating and deposition of tantalum nitride, J. Vac.
    Sci. Technol. A 17, 2969 (1999).
    110.C. C. Chang, J. S. Jeng, and J. S. Chen, Microstructural and electrical
    characteristics of reactively sputtered Ta-N thin films, Thin Solid Films
    413, 46 (2002).
    111.J. H. Wang, L. J. Chen, Z. C. Lu, C. S. Hsiung, W. Y. Hsieh, and T. R.
    Yew, Ta and Ta–N diffusion barriers sputtered with various N2/Ar ratios
    for Cu metallization, J. Vac. Sci. Technol. B 20, 1522 (2002).
    112.P. N. Sen and M. F. Thorpe, Phonons in AX2 glasses: From molecular to band-
    like modes, Phys. Rev. B 15, 4030 (1977).
    113.F. L. Galeener, Band limits and the vibrational spectra of tetrahedral
    glasses, Phys. Rev. B 19, 4292 (1979).
    114.G. Lucovsky, M. J. Manitini, J. K. Srivastava, and E. A. Irene, Low-
    temperature growth of silicon dioxide films: A study of chemical bonding by
    ellipsometry and infrared spectroscopy, J. Vac. Sci. Technol. B 5, 530
    (1987).
    115.T. Homma, Properties of fluorinated silicon oxide films formed using
    fluorotriethoxysilane for interlayer dielectrics in multilevel
    interconnections, J. Electrochem. Soc. 143, 1084 (1996).
    116.S. Lee and J. W. Park, Effect of fluorine on dielectric properties of SiOF
    films, J. Appl. Phys. 80, 5260 (1996).
    117.Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, and Y. Lee, Infrared
    spectroscopy study of low-dielectric-constant fluorine-incorporated and
    carbon-incorporated silicon oxide films, J. Appl. Phys. 90, 3367 (2001).
    118.W. A. Pliskin, Comparison of properties of dielectric films deposited by
    various methods, J. Vac. Sci. Technol. 14, 1064 (1977).
    119.S. Kondo, K. Tomoi, and C. Pak, The characterization of the hydroxyl
    surface of silica gel, Bull. Chem. Soc. Jpn. 52, 2046 (1979).
    120.Y. Kuo, Reactive ion etching of sputter deposited tantalum oxide and its
    etch selectivity to tantalum, J. Elelctrochem. Soc. 139, 579 (1992).
    121.J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-
    ray Photoelectron Spectroscopy, J. Chastain and R. C. King, Jr., Editor,
    (Physical Electronics Inc., Minnesota, 1995).
    122.G. E. McGuire, G. K. Schweitzer, and T. A. Carlson, Study of core electron
    binding energies in some group IIIa, Vb and VIb compounds, Inorg. Chem. 12,
    2450 (1973).
    123.O. R. Rodriguez, W. Cho, R. Saxena, J. L. Plawsky, and W. N. Gill,
    Mechanism of Cu diffusion in porous low-k dielectrics, J. Appl. Phys. 98,
    024108 (2005).
    124.T. Fujii, K. Asai, M. Sawada, K. Sakurai, K. Kobayashi, and M. Yoneda,
    Effects of fluorine stability and stress in SiOF films on film adhesion, J.
    Electrochem. Soc. 152, G152 (2005).
    125.L. Tsetseris, X. J. Zhou, D. M. Fleetwood, R. D. Schrimpf, and S. T.
    Pantelides, Dual role of fluorine at the Si-SiO2 interface, Appl. Phys.
    Lett. 85, 4950 (2004).
    126.W. J. Chang, M. P. Houng, and Y. H. Wang, Trap concentration dependence on
    the electrical properties of annealed ultrathin fluorinated silicon oxides,
    Jap. J. Appl. Phys. 40, 1300 (2001).

    下載圖示 校內:2007-07-27公開
    校外:2007-07-27公開
    QR CODE