| 研究生: |
韓志偉 Han, Chih-Wei |
|---|---|
| 論文名稱: |
簡易塗佈PVDF-HFP/FAS-13/HM-SiNPs奈米複合材料製備全疏滑溜表面 Facile Coating for Fabrication of Slippery Surfaces with Omniphobicity by Using PVDF-HFP/FAS-13/HM-SiNPs Nanocomposites |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | PVDF-HFP 、疏水化改質二氧化矽 、奈米複合表面 、全疏性 、滑溜表面 |
| 外文關鍵詞: | PVDF-HFP, Hydrophobically-modified silica nanoparticles, Organic-inorganic composite coating, Slippery surface, Omniphobicity |
| 相關次數: | 點閱:151 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於發展模仿植物表面的疏液性質,製備出具備如同豬籠草唇上滑溜特性的表面。以添加氟烷基矽烷(FAS-13)的含氟共聚高分子 (Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP)以及經過矽烷疏水化後的SiO2奈米粒子(HM-SiNPs)做為主要材料,並利用刮刀塗佈方式製備奈米複合薄膜。接著將極低表面張力的Fomblin® Y引入前述製備的粗糙結構中,創造出具有穩定且全疏滑溜的表面。
研究結果顯示,利用控制PVDF-HFP及HM-SiNPs之比例可有效改變薄膜的表面型態與粗糙度,此外疏水性也會隨著HM-SiNPs的比例提升而增加,產生一疏水且具高黏著力的表面,就如同玫瑰花瓣表面的特性。接著利用Fomblin® Y注入表面之後所形成的滑溜表面在PVDF-HFP及HM-SiNPs之比值小於1的情況下,對於七種測試液體(表面張力由72.8mN/m至18.6mN/m) 都會從滑溜薄膜上滑落,皆具有全疏滑溜性質 (傾斜角, SA≤ 10o)。滑溜薄膜在時間的持久性測試具備一定程度的穩定性。由於其易於製備的優點,應用於不同基板的表面也可以具備良好的全疏滑溜特性。
In this work, biomimic liquid-repellent surfaces which has slippery property like nepenthes pitcher plant was demonstrate. PVDF-HFP mixed with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS-13) and hydrophobically-modified silica nanoparticles (HM-SiNPs) were used for the main material. The nanocomposite film was fabricated by blade coating. Furthermore, stable and slippery surface can be fabricated by infusing perfluorinated lubricating liquid, Fomblin® Y, which has extremely low surface tension into the rough nanocomposite thin films. The results showed that the morphology and roughness can be control by adjusting the ratio of PVDF-HFP and hydrophobically-modified silica nanoparticles. The nanocomposite surface has the hydrophobic and high adhesive properties like rose petal. After infusing the Fomblin® Y into the rough nanocomposite thin film, the slippery surface which the ratio of PVDF-HFP and HM-SiNPs was less than 1 exhibited highly liquid repellency against seven pure liquids (water, ethylene glycol, hexadecane, pentadecane, nonane, octane, and haxane) with surface tension from 72.8 mN/m to 18.6 mN/m. In persistence test for time and resistance test for shear force, the slippery property still can be kept. Because of the advantage for facile fabrication, the nanocomposite thin film could apply in different kinds of substrates and still possess great slippery properties. In addition, we also demonstrated that the SLIPSs exhibit ice-repellent properties after freezing in refrigerator for one hour.
Barthlott, W.; Neinhuis, C., Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta, 202, 1-8, 1997.
Neinhuis, C.; Barthlott, W., Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany, 79, 667-677, 1997.
Marmur, A., The Lotus Effect:Superhydrophobicity and Metastability. Langmuir , 20, 3517-3519, 2004.
Ma, L.; Chung, T. S.; Good, R. J., Surface Energy of Thermotropic Liquid Crystalline Polyesters and Polyesteramide. J. polym. Sci. B, 36, 2327-2337, 1998.
Wenzel, R. N., Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem., 28, 988-994, 1936.
Cassie, A. B. D.; Baxter, S., Wettability of Porous Surfaces. Trans. Faraday Soc., 40, 546-551, 1944.
Rahmawan, Y.; Xu, L.; Yang, S., Self-assembly of Nanostructures Towards Transparent, Superhydrophobic Surfaces. J. Mater. Chem. A, 1, 2955, 2013.
Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion. Accounts Chem. Res., 43, 368-377, 2010.
Liu, X.; Liang, Y.; Zhou, F.; Liu, W., Extreme Wettability and Tunable Adhesion: Biomimicking Beyond Nature? Soft Matter , 8, 2070-2086, 2012.
Feng, X. J.; Jiang, L., Design and Creation of Superwetting/ Antiwetting Surfaces. Adv. Master., 18, 3063-3078, 2006.
Bico, J.; Thiele, U.; Quéré, D., Wetting of Textured Surfaces. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 206, 41-46, 2002.
Tuteja, A.; Choi, W.; Ma M.; Mabry, J. M.; Mazzella, S. A.; Rutledge G. C.; McKinley, G. H.;Cohen R. E., Designing Superoleophobic Surfaces. Science, 318, 1618-1622, 2007.
Sun, T.; Feng, L.; Gao, X.; Liang, L., Bioinspired Surfaces with Special Wettability. Accounts Chem. Res., 38, 644-652, 2005.
Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal Effect: A Superhydrophobic State With High Adhesive Force. Langmuir , 24, 4114-4119, 2008.
Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic Alihned Polystyrene Nanotube Films with High Adhesive Force. Adv. Mater., 12, 1977-1981, 2005.
Xi, J.; Jiang, L., Biomimic Superhydrophobic Surfaces with High Adhesive Forces. Ind. Eng. Chem. Res., 47, 6354–6357, 2008.
Zhao, W.; Wang, L.; Xue, Q., Fabrication of Low and High Adhesion Hydrophobic Au Surfaces with Micro/Nano-Biomimetic Structures. J. Phys. Chem. C, 114, 11509-11514, 2010.
Zhao, X. D.; Fan H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-Dependent Tunable Adhesion of Superhydrophobic MnO2 Nanostructured Film. Langmuir, 27, 3224-3228, 2011.
Yong, J.; Chen, F.; Yang, Q.; Zhang D.; Bian, H.; Du, G.; Si, J.; Meng, X.; Hou, X., Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays. Langmuir, 29, 3274-3279, 2013.
Tan, C.; Cai, P.; Xu, L.; Yang, N.; Xi, Z.; Li, Q., Fabrication of Superhydrophobic Surface With Controlled Adhesion By Designing Heterogeneous Chemical Composition. Appl. Surf. Sci., 349, 516-523, 2015.
徐國財;張立德, 奈米複合材料, 五南圖書出版股份有限公司, 2004.
Roy, R.; Komarneni, S.; Roy, D. M., Multiphase Ceramic Composites Made by Sol-Gel Technique. Elsevier, North Holland, 347-359, 1984.
Roy, R. A.; Roy, R., Diphasic xerogels: I. Ceramic-metal Composites. Mater. Res. Bull., 19, 169-177, 1984.
Hoffman, D. W.; Roy, R.; Komarneni, S., Diphasic Xerogels, A New Class of Materials: Phases in the System Al2O3-SiO2. J . Am. Ceram. SOC., 67, 468-4711, 1984.
Tai, H.; Jiang, Y.; Xie, G.; Yu, J.; Chen, X., Fabrication and Gas Sensitivity of Polyaniline–Titanium Dioxide Nanocomposite Thin Film. Sens. Actuators. B Chem., 125, 644-650, 2007.
Kobayashi, Y.; Tanase, T.; Tabata, T.; Miwa, T.; Konno, M., Fabrication and Dielectric Properties of the BaTiO3–polymer Nano-composite Thin Films. J. Eur. Ceram. Soc., 28, 117-122, 2008.
Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Lin, T., Robust, Self-Healing Superamphiphobic Fabrics Prepared by Two-Step Coating of Fluoro-Containing Polymer, Fluoroalkyl Silane, and Modified Silica Nanoparticles. Adv. Funct. Mater., 23, 1664-1670, 2013.
Shi, Y.; Xiao, X., Facile Spray-Coating for Fabrication of Superhydrophobic SiO2/PVDF Nanocomposite Coating on Paper Surface. J. Dispersion Sci. Technol., 37, 640-645, 2016.
Wang, N.; Xiong, D.; Lu, Y.; Pan, S.; Wang, K.; Deng, Y.; Shi, Y., Design and Fabrication of the Lyophobic Slippery Surface and Its Application in Anti-Icing. J. Phys. Chem. C, 120, 11054−11059, 2016.
Wang, Y.; Zhang, H.; Liu, X.; Zhou, Z., Slippery Liquid-infused Substrates: a Versatile Preparation, Unique Anti-wetting and Drag Reduction Effect on Water. J. Mater. Chem. A, 4, 2524-2529, 2016.
Sun, H.; Xu, Y.; Zhou Y.; Gao, W.; Zhao, H.; Wang, W., Preparation of Superhydrophobic Nanocomposite Fiber Membranes by Electrospinning Poly(vinylidene fluoride)/Silane Coupling Agent Modified SiO2 Nanoparticles. J. Appl. Polym. Sci., 134, 44501, 2017.
Vansant, E. F.; Voort, P. V. D.; Vrancken, K. C., Characterization and Chemical Modification of the Silica Surface. Elsvier: Amsterdam, 1995
Plueddeman, E. P., Silane Coupling Agents. Plenum Press: New York, 1991.
Pellerite, M. J.; Wood, E. J.; Jones, V. W., Dynamic Contact Angle Studies of Self-Assembled Thin Films from Fluorinated Alkyltrichlorosilanes. J. Phys. Chem. B, 106, 4746-4754, 2002.
張鑑祥; 楊毓民, 分子層級的薄膜表面型態控制 - 逐層組裝技術. 化工技術 12, 135-144, 2004.
Bohn, H. F.; Federle W., Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully Wettable Water-lubricated Anisotropic Surface. PNAS, 101, 14138-14143, 2004.
Wong, T. S.; Kang, S. H.; Tang, S. K.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J., Bioinspired Self-repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature, 477, 443-447, 2011.
Daniel, D.; Mankin, M. N.; Belisle, R. A.; Wong, T. S.; Aizenberg, J., Lubricant-Infused Micro/Nano-Structured Surfaces with Tunable Dynamic Omniphobicity at High Temperatures. Appl. Phys. Lett., 102, 231603 (4 pages), 2013.
Yao, X.; Hu, Y.; Grinthal, A.; Wong, T. S.; Mahadevan L.; Aizenberg J., Adaptive Fluid-infused Porous Films with Tunable Transparency and Wettability. Nature Materials, 12, 529-534, 2013.
Zhu, L.; Xue, J.; Wang, Y.; Chen, Q.; Ding, J.; Wang Q., Ice-phobic Coatings Based on Silicon-Oil-Infused Polydimethylsiloxane. ACS Appl. Mater. Interfaces, 5, 4053−4062, 2013.
Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang L., Robust Prototypical Anti-icing Coatings with a Self-lubricating Liquid Water Layer between Ice and Substrate. ACS Appl. Mater. Interfaces, 5, 4026−4030, 2013.
Lafuma, A.; Quéré, D., Slippery Pre-suffused Surfaces. EPL, 96, 56001, 2011.
Kim, P.; Kreder, M. J.; Alvarenga, J.; Aizenberg J., Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Lett., 13, 1793−1799, 2013.
Jenner E.; D'Urso B., Wetting States on Structured Immiscible Liquid Coated Surfaces. Applied Physics Letters, 103, 251606, 2013.
Li, J.; Kleintschek, T.; Rieder, A.; Cheng, Y.; Baumbach, T.; Obst, U.; Schwartz, T.; Levkin P. A., Hydrophobic Liquid-Infused Porous Polymer Surfaces for Antibacterial Applications. ACS Appl. Mater. Interfaces, 5, 6704−6711, 2013.
Epstein, A. K.; Wong, T. S.; Belisle, R. A.; Boggs, E. M.; Aizenberg J., Liquid-infused Structured Surfaces with Exceptional Anti-biofouling Performance. PNAS, 109, 13182–13187, 2012.
Zhang, J.; Wang, A.; Seeger, S., Nepenthes Pitcher Inspired Anti-Wetting Silicone Nanofilaments Coatings: Preparation, Unique Anti-Wetting and Self-Cleaning Behaviors. Adv. Funct. Mater., 24, 1074–1080, 2014.
Yang, S.; Qiu, R.; Song, H.; Wang, P.; Shi, Z.; Wang, Y., Slippery Liquid-infused Porous Surface Based on Perfluorinated Lubricant/Iron Tetradecanoate: Preparation and Corrosion Protection Application. Appl. Surf. Sci., 328, 491-500, 2015.
St. Thomas, Spectroscopic Tools. URL: http://www.science-and-fun.de/tools/
Stober, W.; Fink, A.; Bohn, E., Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci., 26, 62-69, 1968.
曾亭瀚, 穩定全疏滑溜表面的開發. 國立成功大學, 台灣, 台南, 2014.