簡易檢索 / 詳目顯示

研究生: 熊健剛
Hsiung, Chien-Kang
論文名稱: 無電鍍鈀/砷化鎵式氫氣感測器之製備及氫氣感測研究
Preparation and Hydrogen Detection Performances of Electroless Plated Pd/GaAs Hydrogen Sensors
指導教授: 陳慧英
Chen, Hury-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 168
中文關鍵詞: 氫氣感測器無電鍍鈀/砷化鎵蕭特基二極體
外文關鍵詞: hydrogen sensor, electroless plating, Schottky diode, palladium, GaAs
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係以無電鍍法在砷化鎵摻雜磊晶膜之基材上沈積鈀膜,並以此鈀/砷化鎵(Pd/GaAs)以及鈀/氧化層/砷化鎵(Pd/Oxide/GaAs)結構之蕭特基二極體作為氫氣感測器。論文前段旨在探討無電鍍法之析鍍變因對於沈積之鈀膜微結構之影響,以及鈀膜微結構對於元件特性之影響。同時,比較酸性和鹼性兩種不同的鍍浴配方析鍍之鈀膜微結構,以及元件特性之差異。論文後段則探討以無電鍍法製備之鈀/砷化鎵以及鈀/氧化層/砷化鎵元件於氫氣感測效果之差異,並探討不同鈀膜微結構對於氫氣感測性能之影響。另外,藉由感測平衡及暫態響應之分析,求出氫氣吸附之熱力學以及動力學參數。
    研究結果顯示,降低無電鍍鍍浴之組成:如整體鍍浴濃度、前驅鹽濃度、還原劑濃度等變因,均將使鈀膜粒徑減小,分佈均勻。而所得元件之二極體電性愈佳。亦即蕭特基能障愈接近理論值,理想係數則愈接近於1。酸性鍍浴配方由於不受鈉離子之干擾,因此所得元件之電性較鹼性鍍浴者為佳。降低析鍍溫度,則可降低析鍍速率,減少鈀與基材間之排差與應力,而能得到更理想之元件特性。
    氫氣感測結果則顯示,鈀/氧化層/砷化鎵結構元件可有效防止鈀膜與砷化鎵之相互擴散形成化合物,而具有較完美之蕭特基接面,因此其感測靈敏度上升,並使感測之氫氣濃度範圍加大。研究中亦發現,鈀膜微結構影響氫氣感測靈敏度甚鉅,元件具有平均粒徑較小且分佈較均一之鈀膜,其靈敏度較大。
    經由感測結果分析可知,氫氣感測機制主要決定於鈀膜上氫之吸附,其吸附行為可以Langmuir模式加以描述,經由理論模式與實驗結果計算,可求得吸附之反應熱與活化能等參數。

    In this work, the Pd/GaAs (MS structured) and Pd/Oxide/GaAs (MOS structured) Schottky-barrier diode hydrogen sensors were fabricated by electroless plating technique. In the first part of the research, alkaline and acidic baths were used to deposit Pd films on the GaAs substrate. The effects of plating variables including concentrations of Pd precursor, reducing agent, and bulk plating bath, as well as the plating time and temperature, on the Pd surface morphology and current-voltage (I-V) characteristics of the resulting devices were investigated. In the second part, the influences of oxide layer and Pd morphologies on the hydrogen sensing performance were also investigated. Furthermore, via the equilibrium and transient detection analyses, the thermodynamic and kinetic parameters can then be obtained.
    From the experimental results, it reveals that the Pd particle size and distribution are decreased by lowering the plating temperature and concentrations of Pd precursor, reducing agent, and bulk plating bath. Furthermore, the I-V characteristics of Pd/GaAs diodes are strongly influenced by the Pd grain size. The Schottky barrier height is increased, and the ideality factor is decreased to unity with decreasing the Pd grain size and particle size distribution. Based on these results, more superior performance of Pd/GaAs Schottky diodes can be obtained by appropriately manipulating the plating conditions.
    As compared with the MS structured device, the MOS device exhibits more perfect interface, because the oxide layer can effectively prevent the interdiffusion of Pd and GaAs. Therefore, the MOS structured device is capable to detect the extremely low hydrogen concentration, e.g,. 15 ppm H2/air, with high sensitivity and wide detection range. It is also found that the Pd film of the device with smaller average particle size exhibits higher hydrogen detecting sensitivity.
    The experimental results also show that the hydrogen detection can be regared as an adsorption process, which can be described by Freundlich adsorption model. From the equilibrium and transient analyses, the heats of adsorption and activation energies of the adsorption process were then obtained.

    總目錄 中文摘要…………I 英文摘要…………II 總目錄……………IV 表目錄……………VI 圖目錄……………VII 符號說明…………XV 第一章 緒論………………………………………1 1.1 化學感測器………………………………1 1.1.1 感測器之定義與發展……………………1 1.1.2 化學感測器之種類與應用………………2 1.1.3 化學感測器之發展方向…………………3 1.2 氣體感測器………………………………4 1.2.1 氣體感測器概述…………………………4 1.2.2 氫氣感測器之類型………………………6 1.2.3 半導體型氫體感測器之簡介……………7 1.2.4 蕭特基二極體式氫氣感測器之發展……8 1.3 研究動機與目的…………………………10 第二章 原理………………………………………19 2.1 無電鍍鈀…………………………………19 2.1.1 無電鍍基本原理…………………………19 2.1.2 無電鍍鈀之鍍浴組成……………………21 2.2 鈀/砷化鎵蕭特基二極體氫氣感測器之感測原理……22 2.2.1 蕭特基二極體結構………………………22 2.2.2 蕭特基二極體元件之電性特性…………23 2.3 氫氣感測…………………………………26 2.3.1 平衡狀態之理論模式……………………27 2.3.2 氫氣吸附之動力模式……………………29 第三章 實驗部分…………………………………38 3.1 藥品與材料………………………………38 3.2 儀器及分析方法…………………………39 3.2.1 分析儀器…………………………………39 3.2.2 設備及裝置………………………………39 3.3 實驗方法與步驟…………………………40 3.3.1 元件製作…………………………………40 3.3.2 氫氣檢測實驗……………………………42 第四章 結果與討論………………………………47 4.1 無電鍍析鍍變因對鈀膜微結構之影響…47 4.1.1 鹼性鍍浴系統析鍍變因對鈀膜微結構之影響……47 4.1.2 酸性鍍浴系統析鍍變因對鈀膜微結構之影響……49 4.1.3 析鍍變因對鈀膜微結構之比較與討論…50 4.2 無電鍍析鍍變因對鈀/砷化鎵蕭特基二極體電性之影響……50 4.2.1 鹼性鍍浴系統析鍍變因對元件電性之影響……51 4.2.2 酸性鍍浴系統析鍍變因對元件電性之影響……52 4.2.3 析鍍變因對元件電性影響之比較與討論…54 4.3 鍍膜方式對鈀/砷化鎵蕭特基二極體電性之比較……54 4.4 MS與MOS結構對氫氣感測性能之分析……56 4.4.1 鈀膜微結構之比較…………………………57 4.4.2 氫氣感測性能之比較………………………57 4.5 氫氣感測理論模式之分析…………………60 4.5.1 平衡量測之理論模式………………………60 4.5.2 平衡量測理論模式之分析結果……………61 4.5.3 動力模式之分析結果………………………62 第五章 結論與建議…………………………………137 5.1 析鍍變因對無電鍍鈀膜微結構之影響……138 5.2 析鍍變因對鈀/砷化鎵蕭特基二極體電性之影響…138 5.3 元件結構分析………………………………138 5.4 氫氣感測性能及理論模式分析……………139 5.5 未來研究方向………………………………140 參考文獻…………………………………………………141

    1. Terms and Definitions in Industrial-Process Measurement and Control, (IEC draft 65/84), International Electrotechnical Committee (1982)
    2. Y. Shimizu, H. Arai, and T. Seiyama. Sensors and Actuators, 7,11 (1985)
    3. I. Lundström, M. S. Shivaraman, and C. M. Svensson, J. Appl. Phys. 46, 3876 (1975)
    4. Middelhoek, S. Noorlag, D. J. W., Sensors and Actuators B, 2. 29 (1981)
    5. M. Mada, Fundamentals of Microfabrication, CRC Press (1997)
    6. T. G. Nenov and S. P. Yordanov. Ceramic Sensors, Technomic Publishing Co,.Inc. (1996)
    7. D. W. G. Ballentyne, D. R. Lovett, A Dictionary of Named Effects and Laws in Chemistry, Physics and Mathematics, London: Chapman and Hall (1980)
    8. E. J. Scheibner, IRE Trans, Comp. Parts. Part I-IV, 8, 133 (1961)
    9. W. Gopel, T. A. Jones, M. Kleitz, J. Lundstrom, and T. Seiyama, Sensors Vol. 2, Chemical and Biochemical Sensors (1991)
    10. G. Tschulena and M. Selders, Technisches Messen, 50 (4), 127 (1983)
    11. W. Gopel, Sensors Vol. 2, Chemical and Biochemical Sensors, Ch3 (1991)
    12. B. Schmidt and D. Schubert, Siliciumsensoren, Berlin: Akademie Verlag (1986)
    13. W. Richter, Grundlagen der elektrischen Messtechnik, and D. Schubert, Berlin: Verlag Technik(1985)
    14. 葉陶淵,科儀新知24, 4 (1999)
    15. 陶德和,科儀新知75(2),64 (1993)
    16. 蔡嬪嬪、曾明漢,材料與社會,68,50 (1992)
    17. 鄭敦仁,材料與社會,76,96 (1993)
    18. 陳克紹、曹永偉,感測器原理與應用技術,全華科技圖書股份有限公司 (1996)
    19. 賴耿陽,感測器應用技術,復漢出版社 (1992)
    20. 王志華,量測資訊,44,92 (1995)
    21. 顧志宏,材料與社會,68,71 (1992)
    22. 林整,二氧化錫之氣體偵測特性,台灣大學化工系碩士論文 (1995)
    23. 陶德和,科儀新知,15(2),64 (1991)
    24. 陳一誠,材料與社會,68,62 (1992)
    25. 林智汶,化工技術,8(2),136 (2000)
    26. 陳伯仁,Pt/Nafion電極在一氧化碳感測器內之感測行為,成功大學化工系碩士論文 (1995)
    27. 吳伉娟,電流式一氧化氮氣體感測器-Au/SPE電極之製備與感測特性,東海大學化工系碩士論文 (1995)
    28. 曾明漢,材料與社會,68,57 (1992)
    29. 蔡嬪嬪,材料與社會,68,67 (1992)
    30. 周澤川、邱秋燕,化工,40(3),120 (1993)
    31. 蔡嬪嬪,工業材料,150(6),92 (1999)
    32. Sze. S. M. Semiconductor Sensors, John Wiley & Sons, Inc. (1994)
    33. M. C. Steele, J. W. Hile, and B. A. MacIver, J. Appl. Phys. 47, 2537 (1976).
    34. Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee, Appl. Phys. Lett. 57(25), 2686, (1990)
    35. S. X. Lin, L. P. Wang, M. H. Yuan, Y. Q. Jia, and G. G. Qin, J. Appl. Phys. 71(1), 536, (1992)
    36. H. Y. Nie, and Y. Nannichi, Jpn. J. Appl. Phys. 30(5), 906, (1991)
    37. K. Okuyama, N. Takinami, Y. Chiba, S. Ohshima, and S. Kambe, J. Appl. Phys 76(1), 231, (1994)
    38. S. Ohshima, H. Usami, K. Okuyama, H. Yamada, and K. Matsushita, Jpn. J. Appl. Phys., 36, part 1(11), (1997)
    39. I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, Appl. Phys. Lett. 26(2), 55, (1975)
    40. K. I. Lundstrom, M. S. Shivaraman, and C. M. Svensson, J. Appl. Phys. 46(9), 3876, (1975)
    41. T. L. Poteat, and B. Lalevic, IEEE Trans Electron Device,ED-29, 123, (1982)
    42. 顧志鴻,MOSFET氣體感測器,材料與社會,68, 71 (1982)
    43. M. J. Madou, S. R. Morrison, Chemical Sensing with Solid State Devices, San Diego: Academic Press (1989)
    44. M. S. Shivaraman, I. Lundstrom, C. Svensson, and H. Hammarsten, Electron. Lett. 12 (1976)
    45. M. C. Steele, and B. A. Maclver, J. Appl. Phys. Lett. 28, 687, (1976)
    46. T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, J. electr. Mater. 12(1), 181, (1983)
    47. M. Ogita, D. B. Ye, K. Kawamura, and T. Yamamoto, Sens. Acuators 9, 157, (1986)
    48. L. L. Tongson, B. E. Knox, T. E. Sullivan and S. J. Fonash, J. Appl. Phys. 50, 1535, (1979)
    49. H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg and E. W. McFarland, Appl. Phys. Lett. 74(26), 4046, (1999)
    50. J. Liu, C. R. Oritz, Y. Z. Hang, H. Bakhru, and J. W. Corbett, Phys. Rev. B, 44(16), 8918, (1991)
    51. H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. W. McFarland, J. Vac. Sci. Technol. A 17(4), 1683, (1999)
    52. Y. Q. Jia, and G. G. Qin, Appl. Phys. Lett. 56(7), 641, (1990)
    53. P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, IEEE Trans Electron Device,ED-29, 9, 1003(1981)
    54. K. Ito, Surface Sci., 86, 345, (1979)
    55. 周彥伊,以無電鍍法製備蕭特基二極體氫氣感測器之研究,成功大學化工系碩士論文 (2001)
    56. S. Nakagomi, H. Watanabe, and Y. Kokubun, Proceedings of the 5th East Asian conference on chemical sensors, 17, (2001)
    57. A. L. Spatz, P. Tobias, L. Uneus, H. Svenningstrop, L. G. Ekedahl, I. Lunderstrom, Sensors and Actuators B, 70, 67 (2000)
    58. C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang, J. Electron Mater., 28(3), 202 (1999)
    59. L. Uneus, P. Tobais, P. Salomonsson, I. Lunderstrom, and A. L. Spetz, Sensors and Meterials, 11(5), 305 (1999)
    60. A. L. Spatz, P. Tobias, A. Baranzahi, P. Martensson, and I. Lunderstrom, IEEE Tran. Electron Device, ED-46(3), 561 (1999)
    61. J. Schalwig, and G. Muller, Appl. Phys. Lett. 80(7), 542, (2002)
    62. K. N. Lee, X. A. Cao, C. R. Abernathy, S. J. Pearton, A. P. Zhang, F. Ren, R. Hickman, and J. M. VanHove, Solid-State Electronics, 44, 1203 (2000)
    63. B. P. Luther, S. D. Wolter, and S. E. Mohney, Sensors and Actuators B, 56, 164 (1999)
    64. 陸俊岑,高靈敏度砷化鋁鎵系列蕭特基式氫氣感測器之研製,成功大學微電子所碩士論文 (2003)
    65. W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, IEEE Electron Device Lett., 23, 640 (2002)
    66. C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. C. Cheng, and W. C. Liu, IEEE Electron Device Lett., (publishing)
    67. H. Hasegawa, Jpn. J. Appl. Phys. Part 1, 38, 1098 (1999)
    68. V. Heine, Phys. Rev. A, 138, 1689 (1965)
    69. H. Hasegawa, and H. Ohno, J. Vac. Sci. Technol. B, 4, 1130 (1986)
    70. W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Linda, J. Vac. Sci. Technol., 16, 1422 (1979)
    71. H. Y. Nie, and Y. Nannichi, Jpn. J. Appl. Phys. Part 1, 30(5B), 906 (1996)
    72. H. Y. Nie, J. Appl. Phys., 87(9), 4327 (2000)
    73. I. Lunderstrom, M. Argarth, and L. G. Petersson, CRC Crit. Rev. Solid Stste Mater. Sci., 15, 201 (1989)
    74. T. Sands and V. G. Keramidas, Thin Solid Films, 136, 105 (1986)
    75. T. Sato, C. Kaneshiro, and H. Hasegawa, Jpn. J. Appl. Phys. Part 1, 38(2B), 1103 (1999)
    76. T. Sato, S. Kasai, and H. Hasegawa, Applied Surface Science, 175-176, 181 (2001)
    77. H. Hasegawa, Y. Koyama, and T. Hashizume, Jpn. J. Appl. Phys. Part 1, 38(4B),2634 (1999)
    78. H. I. Chen, C. K. Hsiung, and Y. I. Chou, Semicond. Sci. Technol., 18, 620 (2003)
    79. G. O. Mallory, J. B. Hajdu, “Electroless plating: Fundamentals and Applications.”, American Electroplaters and Surface Finishers Society (1990)
    80. 黃定加、陳慧英、魏明治,鈀及鈀合金複合膜之製備及應用研究(I)—支撐式鈀/氧化鋁複合膜之改質研究,行政院國科會專題研究計畫成果報告 (1996)
    81. J. Shu, B P A Grandjean, and S. Kaliaguine, Thin Solid Film, 252, 26 (1994)
    82. J. Shu, B P A Grandjean, A. Ghali, and A. Kaliaguine J. Electrochem. Soc., 140, 3175 (1993)
    83. Y. S. Cheng, and K. L. Yeung, J. Membr. Sci. 158, 127, (1999)
    84. K. L. Yeung, S. C. Christiansen, and A. Varma, J. Membr. Sci. 159, 107, (1999)
    85. Y. S. Cheng, and K. L. Yeung, J. Membr. Sci. 182, 195 (2001)
    86. R. N. Rhoda, Trans. Inst. Metal Finish, 36, 82 (1959); U. S. patent, 2, 915, 406 (1959)
    87. A. Sergienko, U. S. patent, 3, 418, 143 (1968)
    88. W. V. Hogh, J. L. Little and K. V. Warheit, U. S. patent, 4, 255, 194 (1981); U. S. patent, 4, 279, 51 (1981)
    89. J. A. Abys, U. S. patent, 4, 424, 241 (1984); U. S. patent, 4, 486, 274 (1984); U. S. patent, 4, 478, 691 (1984); U. S. patent, 4, 468, 296 (1984); U. S. patent, 4, 427, 502 (1984)
    90. 施敏、張俊彥,半導體元件物理與製作技術,高立圖書公司 (1996)
    91. D. A. Neamen, “Semiconductor Physics and Devices”, Chicago: Irwin McGraw Hill, 2nd ed. (1997)
    92. G. Eftekhari, Phys. Stat. Sol. (A), 140, 189 (1993)
    93. B. L. Sharma, Metal-Semiconductor Schottky Barrier Junction and Their Applications, New York and Landon: Pleum Press (1984)
    94. H. C. Card and E. H. Rhderick, J. Phys. D: Appl. Phys., 4, 1586 (1971)
    95. L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, J. Appl. Phys. 70(6), 3348 (1991)
    96. L. Uneus, P. Tobias, P. Salomonsson, I. Lunderstrom, and A. L. Spetz, Sensors and Materials, 11(5), 305 (1999)
    97. B. Keramati, J. N. Zemel, J. Appl. Phys. 53, 1091 (1982)
    98. W. P. Kang and Y. Gurbuzm, J. Appl. Phys. 75(12), 8175 (1994)
    99. M. J. Madau, and S. R. Morrison, “Chemical Sensing eith Solid Statr Devices”, New York: Academic, (1989)
    100. J. Bardeen, Phys. Rev., 71, 717 (1947)
    101. H. Hasegawa, T. Sato, and T. Hashizume, J. Vac. Sci. Technol. B., 15(4), 1227 (1997)
    102. 方建雄、謝雪生、何侗民、蘇炎坤、白桂芳,N-型AlxGa1-xAs薄膜中之拉曼散射,行政院國科會專題研究計畫成果報告 (1988)
    103. M. Johansson, I. Lunderstrom, and L. G. Ekedahl, J. Appl. Phys. 84(1), 44 (1998)
    104. M. J. Usher, “Sensors and Transducers”, London: Machmillan Publishers Ltd., 1st ed. (1985)
    105. P. Hauptmann, Sensors Principles and Applications, NJ: Prentice Hall (1985)
    106. T. G. Nenov, S. P. Yordanov, “Ceramic Sensors”, Technomic Publishing Inc. (1996)
    107. N. T. Wu, T. Hashizume, H. Hasegawa Jpn. J. Appl. Phys. 33, 936 (1994)

    下載圖示 校內:立即公開
    校外:2003-08-11公開
    QR CODE