簡易檢索 / 詳目顯示

研究生: 許雅鈴
Hsu, Ya-Ling
論文名稱: 亨廷頓相關蛋白1與40對錯誤折疊蛋白清除的影響
Effects of HAP1 and HAP40 on clearance of misfolded proteins
指導教授: 何盧勳
Her, Lu-Shiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 亨廷頓蛋白亨廷頓相關蛋白1亨廷頓相關蛋白40聚集體
外文關鍵詞: Htt, HAP1, HAP40, aggresome
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在神經細胞中,運動蛋白藉由在軸突的微管上運送囊泡,包括與驅動蛋白進行正向而與動力蛋白進行反向運輸來進行訊號傳遞。當軸突運輸遭到破壞之後常會導致一些神經疾病,例如亨廷頓舞蹈症。先前研究指出亨廷頓蛋白會藉由跟亨廷頓相關蛋白1與40結合,在微管上進行運輸,例如:亨廷頓蛋白跟亨廷頓相關蛋白1結合,在微管上進行正向及反向運輸。而亨廷頓相關蛋白40也調節小鳥糞嘌呤核苷三磷酸酵素招引亨廷頓蛋白至早期內噬體,並使早期內噬體從微管轉至肌動蛋白運輸。因此本篇論文主要在探討微管相關蛋白如:亨廷頓蛋白、亨廷頓相關蛋白1與亨廷頓相關蛋白40對小鼠神經母細胞瘤細胞株的生存能力、突變亨廷頓蛋白聚集的情況以及聚集體形成的狀態有什麼影響。首先利用小髮夾型核醣核酸來降低蛋白的表現量,發現當亨廷頓蛋白表現降低時,內生性亨廷頓相關蛋白40的表現量也下降;而在亨廷頓相關蛋白40減少的情況下,內生性亨廷頓蛋白的表現量也降低;但在降低亨廷頓相關蛋白1表現時,亨廷頓蛋白及亨廷頓相關蛋白40的表現不受影響。接著探討細胞的存活率,發現降低亨廷頓蛋白與亨廷頓相關蛋白1表現細胞存活率會增加,過度表現亨廷頓相關蛋白1則會減少,而降低亨廷頓相關蛋白40的表現細胞生存能力也隨之降低。文獻指出,在亨廷頓舞蹈症患者大腦的皮質與紋狀體中,突變亨廷頓蛋白會聚集在神經細胞核,我們進一步了解亨廷頓蛋白、亨廷頓相關蛋白1與亨廷頓相關蛋白40對突變亨廷頓蛋白聚集的形成的影響。發現降低亨廷頓蛋白與亨廷頓相關蛋白1表現會使突變亨廷頓蛋白聚集增加,過度表現亨廷頓相關蛋白1與降低亨廷頓相關蛋白40表現則突變亨廷頓蛋白聚集不受影響。亦有文獻指出,當泛素-蛋白酶系統降解突變亨廷頓蛋白的能力衰弱之後,就會使得聚集體產生。因此想瞭解亨廷頓相關蛋白1與亨廷頓相關蛋白40是否有參與在內,發現突變亨廷頓蛋白的確有參與在聚集體中,並且經由蛋白酶體抑制劑誘導產生的聚集體,亨廷頓相關蛋白1A與亨廷頓相關蛋白40也參與在內。綜合以上結果顯示出亨廷頓蛋白與亨廷頓相關蛋白1若被削弱,突變亨廷頓蛋白的聚集就很容易形成,影響細胞對錯誤折疊蛋白的清除,而亨廷頓相關蛋白1A和亨廷頓相關蛋白40可能參與聚集體的形成,進而保護由具有麩醯胺酸重覆序列的細胞所產生的毒性。

    Transport of vesicles in neurons is a highly regulated process, with vesicles moving either anterogradely or retrogradely depending on the nature of the molecular motors, kinesins and dynein. The neurodegenerative disorder Huntington’s disease is caused by an expansion in the polyglutamine repeat region of the protein huntingtin. Htt protein regulates transport of endocytic vesicles by interacting with trafficking adaptors such as huntingtin-associated protein 1 and 40 (HAP1 and HAP40). HAP1 is interacts with dynactin p150Glued (dynactin p150) and kinesin light chain (KLC). HAP40 shifts early endosome from microtubule to actin filament via recruitment of Htt by Rab5. Previous studies show that dynein dysfunction increases aggregate formation in mouse model of Huntington’s disease. Thus, we investigated the effects of HAP1 and HAP40 on cell viability and aggresome formation. We studied the function of HAP1 and HAP40 by knocking down their expression with shRNAs in mouse neuroblastoma cells (N2a cells). Western blot assays showed that, after reduction of HAP40, endogenous Htt level was decreased. Similarly, endogenous HAP40 level was lower after a reduction of Htt. Our previous data showed that overexpression of HAP40 reduces cell viability. Here, MTT assay showed that loss of HAP40 also reduced cell viability. On the other hand, loss of HAP1 increased cell viability, while overexpression of HAP1 reduced cell viability. Furthermore, loss of HAP1 promoted aggregates formation of mutant huntingtin QP103-GFP. Overexpression of HAP1 did not affect aggregates formation of mutant huntingtin. Our previous study showed that overexpression of HAP40 promotes aggregates formation of mutant huntingtin. We found that loss of endogenous HAP40 did not affect aggregates formation of mutant huntingtin significantly. Aggresomes are inclusion bodies that form when the ubiquitin–proteasome machinery is overwhelmed with aggregation-prone proteins. We found that HAP1A and HAP40 colocalized with aggresome after MG132 treatment. This may affect the clearance of misfolded proteins in N2a cells.

    中文摘要 1 Abstract 3 誌謝 5 目錄 7 圖目錄 10 縮寫表 11 前言 12 一、神經退化性疾病(Neurodegenerative diseases) 12 二、亨廷頓舞蹈症(HD) 12 三、亨廷頓蛋白(Huntingtin) 14 四、亨廷頓相關蛋白1 (HAP1) 16 五、亨廷頓相關蛋白40 (HAP40) 17 六、突變亨廷頓蛋白與聚集(Mutant Htt and aggregation) 18 七、聚集體(Aggresome) 19 實驗目的 21 材料與方法 22 一、抗體與質體(Antibodies and plasmids) 22 二、細胞培養(Cell culture) 23 三、轉染作用(Transfection) 29 四、西方墨點法(Western blot assay) 30 五、細胞免疫螢光染色(Immunofluorescence staining) 33 六、細胞存活率分析(MTT assaay) 34 七、聚集體染色法(Aggresome detection) 35 八、統計方法(Statistics) 36 結果 37 一、確認具專一性辨認亨廷頓相關蛋白1A的抗體(濁水溪生物科技公司,LTK代製) 37 二、內生性HAP1以及HAP1A在細胞內的分布形態 38 三、過度表現HAP1A以及HAP1B在細胞內的分布形態 39 四、內生性HAP1以及HAP1A和核周胞器與結構重疊 41 五、藉由shRNA降低亨廷頓相關蛋白的表現 42 六、亨廷頓相關蛋白的表現對N2a細胞存活率的影響 43 七、亨廷頓相關蛋白對突變亨廷頓蛋白聚集形成的影響 44 八、亨廷頓相關蛋白與聚集體(Aggresome)重疊 46 討論 48 參考文獻 54 圖與圖誌 63

    Amijee, H., J. Madine, D.A. Middleton, and A.J. Doig. 2009. Inhibitors of protein aggregation and toxicity. Biochemical Society transactions. 37:692-696.
    Bates GP, H.P., Jones AL (eds) 2002. Huntington's Disease. Oxford, UK: Oxford University Press.
    Bessert, D.A., K.L. Gutridge, J.C. Dunbar, and L.R. Carlock. 1995. The identification of a functional nuclear localization signal in the Huntington disease protein. Brain research. Molecular brain research. 33:165-173.
    Block-Galarza, J., K.O. Chase, E. Sapp, K.T. Vaughn, R.B. Vallee, M. DiFiglia, and N. Aronin. 1997. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport. 8:2247-2251.
    Borrell-Pages, M., D. Zala, S. Humbert, and F. Saudou. 2006. Huntington's disease: from huntingtin function and dysfunction to therapeutic strategies. Cellular and molecular life sciences : CMLS. 63:2642-2660.
    Colin, E., D. Zala, G. Liot, H. Rangone, M. Borrell-Pagès, X.J. Li, F. Saudou, and S. Humbert. 2008. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. The EMBO journal. 27:2124-2134.
    Cornett, J., F. Cao, C.E. Wang, C.A. Ross, G.P. Bates, S.H. Li, and X.J. Li. 2005. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat Genet. 37:198-204.
    Davies, S.W., M. Turmaine, B.A. Cozens, M. DiFiglia, A.H. Sharp, C.A. Ross, E. Scherzinger, E.E. Wanker, L. Mangiarini, and G.P. Bates. 1997. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 90:537-548.
    de la Monte, S.M., J.P. Vonsattel, and E.P. Richardson, Jr. 1988. Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. Journal of neuropathology and experimental neurology. 47:516-525.
    De Marchi, N., and R. Mennella. 2000. Huntington's disease and its association with psychopathology. Harvard review of psychiatry. 7:278-289.
    DiFiglia, M., E. Sapp, K. Chase, C. Schwarz, A. Meloni, C. Young, E. Martin, J.P. Vonsattel, R. Carraway, S.A. Reeves, and et al. 1995. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron. 14:1075-1081.
    DiFiglia, M., E. Sapp, K.O. Chase, S.W. Davies, G.P. Bates, J.P. Vonsattel, and N. Aronin. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (New York, N.Y.). 277:1990-1993.
    Engelender, S., A.H. Sharp, V. Colomer, M.K. Tokito, A. Lanahan, P. Worley, E.L. Holzbaur, and C.A. Ross. 1997. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Human molecular genetics. 6:2205-2212.
    Engqvist-Goldstein, Å.E.Y.W., Robin A.; Kessels, Michael M.; Keen, James H.; Heuser, John; Drubin, David G. . 2001. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. The Journal of Cell Biology. 154:1209-1223.
    Fujinaga, R., A. Yanai, H. Nakatsuka, K. Yoshida, Y. Takeshita, K. Uozumi, C. Zhao, K. Hirata, K. Kokubu, M. Nagano, and K. Shinoda. 2007. Anti-human placental antigen complex X-P2 (hPAX-P2) anti-serum recognizes C-terminus of huntingtin-associated protein 1A common to 1B as a determinant marker for the stigmoid body. Histochemistry and cell biology. 128:335-348.
    Fusco, F.R., Q. Chen, W.J. Lamoreaux, G. Figueredo-Cardenas, Y. Jiao, J.A. Coffman, D.J. Surmeier, M.G. Honig, L.R. Carlock, and A. Reiner. 1999. Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19:1189-1202.
    Gafni, J., E. Hermel, J.E. Young, C.L. Wellington, M.R. Hayden, and L.M. Ellerby. 2004. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. The Journal of biological chemistry. 279:20211-20220.
    Gauthier, L.R., B.C. Charrin, M. Borrell-Pagès, J.P. Dompierre, H. Rangone, F.P. Cordelières, J. De Mey, M.E. MacDonald, V. Leßmann, S. Humbert, and F. Saudou. 2004a. Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules. Cell. 118:127-138.
    Gauthier, L.R., B.C. Charrin, M. Borrell-Pages, J.P. Dompierre, H. Rangone, F.P. Cordelieres, J. De Mey, M.E. MacDonald, V. Lessmann, S. Humbert, and F. Saudou. 2004b. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 118:127-138.
    Group, T. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell. 72:971-983.
    Gutekunst, C.A., S.H. Li, H. Yi, R.J. Ferrante, X.J. Li, and S.M. Hersch. 1998. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18:7674-7686.
    Hackam, A.S., R. Singaraja, C.L. Wellington, M. Metzler, K. McCutcheon, T. Zhang, M. Kalchman, and M.R. Hayden. 1998. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol. 141:1097-1105.
    Haddad, M.S., and J.L. Cummings. 1997. Huntington's disease. The Psychiatric clinics of North America. 20:791-807.
    Hendricks, A.E., J.C. Latourelle, K.L. Lunetta, L.A. Cupples, V. Wheeler, M.E. MacDonald, J.F. Gusella, and R.H. Myers. 2009. Estimating the probability of de novo HD cases from transmissions of expanded penetrant CAG alleles in the Huntington disease gene from male carriers of high normal alleles (27-35 CAG). American journal of medical genetics. Part A. 149A:1375-1381.
    Kalchman, M.A., H.B. Koide, K. McCutcheon, R.K. Graham, K. Nichol, K. Nishiyama, P. Kazemi-Esfarjani, F.C. Lynn, C. Wellington, M. Metzler, Y.P. Goldberg, I. Kanazawa, R.D. Gietz, and M.R. Hayden. 1997. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet. 16:44-53.
    Keryer, G., J.R. Pineda, G. Liot, J. Kim, P. Dietrich, C. Benstaali, K. Smith, F.P. Cordelieres, N. Spassky, R.J. Ferrante, I. Dragatsis, and F. Saudou. 2011. Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease. The Journal of clinical investigation. 121:4372-4382.
    Kirkwood, S.C., J.L. Su, P. Conneally, and T. Foroud. 2001. Progression of symptoms in the early and middle stages of Huntington disease. Archives of neurology. 58:273-278.
    Leung, C.M., Y.W. Chan, C.M. Chang, Y.L. Yu, and C.N. Chen. 1992. Huntington's disease in Chinese: a hypothesis of its origin. J Neurol Neurosurg Psychiatry. 55:681-684.
    Li, S.H., C.A. Gutekunst, S.M. Hersch, and X.J. Li. 1998a. Association of HAP1 isoforms with a unique cytoplasmic structure. Journal of neurochemistry. 71:2178-2185.
    Li, S.H., C.A. Gutekunst, S.M. Hersch, and X.J. Li. 1998b. Interaction of huntingtin-associated protein with dynactin P150Glued. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18:1261-1269.
    Li, S.H., S.H. Hosseini, C.A. Gutekunst, S.M. Hersch, R.J. Ferrante, and X.J. Li. 1998c. A human HAP1 homologue. Cloning, expression, and interaction with huntingtin. The Journal of biological chemistry. 273:19220-19227.
    Li, S.H., H. Li, E.R. Torre, and X.J. Li. 2000. Expression of huntingtin-associated protein-1 in neuronal cells implicates a role in neuritic growth. Molecular and cellular neurosciences. 16:168-183.
    Li, S.H., and X.J. Li. 1998. Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Human molecular genetics. 7:777-782.
    Li, S.H., Z.X. Yu, C.L. Li, H.P. Nguyen, Y.X. Zhou, C. Deng, and X.J. Li. 2003. Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23:6956-6964.
    Li, X.-J., S.-H. Li, A.H. Sharp, F.C. Nucifora, G. Schilling, A. Lanahan, P. Worley, S.H. Snyder, and C.A. Ross. 1995. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 378:398-402.
    Li, X.J., and S.H. Li. 2005. HAP1 and intracellular trafficking. Trends in pharmacological sciences. 26:1-3.
    Lodish H, Berk A, and e.a. Zipursky SL. 2000. Molecular Cell Biology.
    MacMillan, J.C., P.J. Morrison, N.C. Nevin, D.J. Shaw, P.S. Harper, O.W. Quarrell, and R.G. Snell. 1993. Identification of an expanded CAG repeat in the Huntington's disease gene (IT15) in a family reported to have benign hereditary chorea. J Med Genet. 30:1012-1013.
    Mark F. Bear, Barry W. Connors, and M.A. Paradiso. 2007. Neuroscience:Exploring the Brain.
    McGuire, J.R., J. Rong, S.H. Li, and X.J. Li. 2006. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. The Journal of biological chemistry. 281:3552-3559.
    Millecamps, S., and J.P. Julien. 2013. Axonal transport deficits and neurodegenerative diseases. Nature reviews. Neuroscience. 14:161-176.
    Milman, P., and J. Woulfe. 2013. A Novel Variant of Neuronal Intranuclear Rodlet Immunoreactive for 40 kDa Huntingtin Associated Protein and Ubiquitin in the Mouse Brain. J Comp Neurol.
    Modregger, J., N.A. DiProspero, V. Charles, D.A. Tagle, and M. Plomann. 2002. PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington's disease brains. Human molecular genetics. 11:2547-2558.
    Moreno, D.G.E. 2001. Huntington Chorea. Cuban Journal of Human Genetics. 3.
    Pal, A., F. Severin, B. Lommer, A. Shevchenko, and M. Zerial. 2006. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. J Cell Biol. 172:605-618.
    Peters, M.F., and C.A. Ross. 2001. Isolation of a 40-kDa Huntingtin-associated protein. The Journal of biological chemistry. 276:3188-3194.
    Qin, Z.H., and Z.L. Gu. 2004. Huntingtin processing in pathogenesis of Huntington disease. Acta pharmacologica Sinica. 25:1243-1249.
    Ravikumar, B., A. Acevedo-Arozena, S. Imarisio, Z. Berger, C. Vacher, C.J. O'Kane, S.D. Brown, and D.C. Rubinsztein. 2005. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet. 37:771-776.
    RH Myers, KS Marans, and M. MacDonald. 1998. Huntington's disease.301-323.
    Rigamonti, D., J.H. Bauer, C. De-Fraja, L. Conti, S. Sipione, C. Sciorati, E. Clementi, A. Hackam, M.R. Hayden, Y. Li, J.K. Cooper, C.A. Ross, S. Govoni, C. Vincenz, and E. Cattaneo. 2000a. Wild-Type Huntingtin Protects from Apoptosis Upstream of Caspase-3. The Journal of Neuroscience. 20:3705-3713.
    Rigamonti, D., J.H. Bauer, C. De-Fraja, L. Conti, S. Sipione, C. Sciorati, E. Clementi, A. Hackam, M.R. Hayden, Y. Li, J.K. Cooper, C.A. Ross, S. Govoni, C. Vincenz, and E. Cattaneo. 2000b. Wild-type huntingtin protects from apoptosis upstream of caspase-3. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20:3705-3713.
    Sharp, A.H., S.J. Loev, G. Schilling, S.H. Li, X.J. Li, J. Bao, M.V. Wagster, J.A. Kotzuk, J.P. Steiner, A. Lo, and et al. 1995. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron. 14:1065-1074.
    Sieradzan, K.A., A.O. Mechan, L. Jones, E.E. Wanker, N. Nukina, and D.M. Mann. 1999. Huntington's disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Experimental neurology. 156:92-99.
    Singaraja, R.R., S. Hadano, M. Metzler, S. Givan, C.L. Wellington, S. Warby, A. Yanai, C.A. Gutekunst, B.R. Leavitt, H. Yi, K. Fichter, L. Gan, K. McCutcheon, V. Chopra, J. Michel, S.M. Hersch, J.E. Ikeda, and M.R. Hayden. 2002. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Human molecular genetics. 11:2815-2828.
    Taylor, J.P., F. Tanaka, J. Robitschek, C.M. Sandoval, A. Taye, S. Markovic-Plese, and K.H. Fischbeck. 2003. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Human molecular genetics. 12:749-757.
    Waelter, S., A. Boeddrich, R. Lurz, E. Scherzinger, G. Lueder, H. Lehrach, and E.E. Wanker. 2001. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Molecular biology of the cell. 12:1393-1407.
    Wang, Y., A.B. Meriin, N. Zaarur, N.V. Romanova, Y.O. Chernoff, C.E. Costello, and M.Y. Sherman. 2009. Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 23:451-463.
    Wanker, E.E., C. Rovira, E. Scherzinger, R. Hasenbank, S. Walter, D. Tait, J. Colicelli, and H. Lehrach. 1997. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Human molecular genetics. 6:487-495.
    Wellington, C.L., R. Singaraja, L. Ellerby, J. Savill, S. Roy, B. Leavitt, E. Cattaneo, A. Hackam, A. Sharp, N. Thornberry, D.W. Nicholson, D.E. Bredesen, and M.R. Hayden. 2000. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. The Journal of biological chemistry. 275:19831-19838.
    Xia, J., D.H. Lee, J. Taylor, M. Vandelft, and R. Truant. 2003. Huntingtin contains a highly conserved nuclear export signal. Human molecular genetics. 12:1393-1403.
    Yang, M., Y. Lim, X. Li, J.H. Zhong, and X.F. Zhou. 2011. Precursor of brain-derived neurotrophic factor (proBDNF) forms a complex with Huntingtin-associated protein-1 (HAP1) and sortilin that modulates proBDNF trafficking, degradation, and processing. The Journal of biological chemistry. 286:16272-16284.
    Yang, W., J.R. Dunlap, R.B. Andrews, and R. Wetzel. 2002. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Human molecular genetics. 11:2905-2917.
    Zeitlin, S., J.P. Liu, D.L. Chapman, V.E. Papaioannou, and A. Efstratiadis. 1995. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet. 11:155-163.
    Zhang, S., M.B. Feany, S. Saraswati, J.T. Littleton, and N. Perrimon. 2009. Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model. Disease models & mechanisms. 2:247-266.
    Zuccato, C., A. Ciammola, D. Rigamonti, B.R. Leavitt, D. Goffredo, L. Conti, M.E. MacDonald, R.M. Friedlander, V. Silani, M.R. Hayden, T. Timmusk, S. Sipione, and E. Cattaneo. 2001. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science (New York, N.Y.). 293:493-498.
    Zuccato, C., M. Tartari, A. Crotti, D. Goffredo, M. Valenza, L. Conti, T. Cataudella, B.R. Leavitt, M.R. Hayden, T. Timmusk, D. Rigamonti, and E. Cattaneo. 2003. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet. 35:76-83.

    無法下載圖示 校內:2018-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE