簡易檢索 / 詳目顯示

研究生: 劉瑋琪
Liu, Wei-Chi
論文名稱: 評估人工智慧對企業營運管理之影響
Evaluating the Impact of Artificial Intelligence on Operational Management in Enterprises
指導教授: 張紹基
Chang, Shao-Chi
學位類別: 碩士
Master
系所名稱: 管理學院 - 經營管理碩士學位學程(AMBA)
Advanced Master of Business Administration (AMBA)
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 83
中文關鍵詞: 人工智慧營運管理運作組織能力麥肯錫 7S 架構模型人工智慧成熟度曲線(AIMC)
外文關鍵詞: Artificial Intelligence, Operational management, Organizational Capabilities, McKinsey 7S Framework, Artificial Intelligence Maturity Curve (AIMC)
相關次數: 點閱:85下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文深入探討了人工智慧(AI)在營運管理中的戰略實施,並利用人工智慧成熟度曲線(AIMC)來評估 AI 需求和問題複雜度。研究採用麥肯錫 7S 框架,將組織成熟度劃分為 AI-新進 (AI-new)、AI-啟用 (AI-enabled)、AI-豐富運用經驗(AI-experienced)和AI-進階運用能力(AI-advanced)等不同階段。

    通過詳細的案例研究和專家訪談,本研究提供了一個系統性 AI 採行路線圖,強調 AI 計劃必須與組織的策略、結構、系統、人員、技能、風格和共同價值觀相配合。研究結果顯示,擁有一套 AI 策略框架在提升組織韌性和運營效率方面發揮著關鍵作用,並結合現實生活中的應用案例,如機器人流程自動化(RPA)解決方案、SAP Ariba 的實施和區塊鏈技術等等,展示了 AI 與結構化方法相結合的轉型潛力。

    本研究旨在為企業提供切實可行的指導,幫助其在充滿變化的市場環境中有效應對 AI 整合挑戰,促進可持續發展並保持競爭優勢。AIMC 模型作為一個策略工具,為組織提供了通過不同 AI 採用階段的指引,從而提升決策能力、精簡流程並優化營運管理,此即為了強調,通過結構化的能力驅動方法,AI 能夠在企業的運營和策略層面帶來顯著的變革效益。

    This thesis examines the strategic implementation of Artificial Intelligence (AI) in operational management, using the AI Maturity Curve (AIMC) to assess AI demand and problem complexity. Leveraging the McKinsey 7S framework, the research categorizes organizational maturity into stages: AI-new, AI-enabled, AI-experienced, and AI-advanced.

    Through case studies and expert interviews, the study provides a detailed roadmap for AI adoption, emphasizing alignment with organizational capabilities. Findings highlight the importance of tailored AI strategies in enhancing organizational resilience and efficiency. Real-world applications, such as RPA solutions, SAP Ariba implementation, and blockchain technology, demonstrate AI's transformative potential when integrated with a structured approach.

    This research offers practical guidance for enterprises to navigate AI integration, fostering sustainable growth and competitive advantage. The AIMC model serves as a strategic tool to guide organizations through AI adoption phases, enhancing decision-making, streamlining processes, and optimizing operational management.

    ABSTRACT I 中文摘要 II 致謝 III TABLE OF CONTENTS V LIST OF FIGURES AND TABLES VIII List of Figures VIII List of Tables VIII CHAPTER I INTRODUCTION 9 1.1 Research Motivation 9 1.2 Research Objectives 9 1.3 Research Significance 10 CHAPTER II LITERATURE REVIEW 11 2.1 Explanation of the Axes 11 2.2 Defining Company's Pain Points in Operational Management (X-axis) 11 2.2.1 Supply Chain Pain Points 12 2.2.2 Holistic Problem Solving 12 2.2.3 Complexity in Innovation 12 2.2.4 Frameworks for Defining Complexity 12 2.3 Defining AI Demand Level (Y-axis) 13 2.3.1 AI Maturity Model as a Framework for AI Demand Levels 13 2.3.2 Maturity Levels and Corresponding AI Demand 14 2.3.3 Application of the AI Maturity Model to AI Demand Levels 15 2.3.4 Economic Principles: Increasing / Constant Returns to Scale 15 2.4 McKinsey 7s framework 17 2.4.1 The Role of Shared Values as the Core Element 17 2.4.2 The Versatility and Applicability of the McKinsey 7S Model 19 2.5 Relationship Between Organizational Capabilities and AI Maturity 19 2.6 Research Gap Identification 20 CHAPTER III METHODOLOGY 22 3.1 Research Design 22 3.2 Research Framework: 23 3.3 Data Collection and Organizational 28 3.3.1 Document Organization 28 3.3.2 Data Analysis 28 3.3.3 Case Studies, descriptions and Semi-Structured Interviews 28 3.3.4 Semi-Structured Interviews 34 3.3.5 Expert Data 36 3.4 Data analysis 36 CHAPTER IV FINDINGS 38 4.1 Artificial Intelligence Maturity Curve (AIMC) 38 4.2 The presence of this intercept 40 4.3 The slope of the progressive curve 41 4.4 Interview and Case study 42 4.4.1 Kimberly-Clark Corporation (Categorized as AI-experienced) 42 4.4.2 Semiconductor Equipment Manufacturer (Categorized as AI-enabled) 46 4.4.3 Packaging Manufacturer (Categorized as AI curious to AI-new) 48 4.4.4 Display Company (Categorized as AI-enabled) 50 4.4.5 Logistic Company (Categorized as AI-experienced) 53 4.4.6 Local Retailer (Categorized as AI-new) 57 4.4.7 Technology Company (Categorized as AI-experienced to AI-advanced) 60 4.4.8 Case study: Walmart Canada - Blockchain-Enhanced Supply Chain (Categorized as AI-advanced) 63 4.5 Categorization of AI Application Maturity 67 4.6 Capability suggestion in AIMC 68 CHAPTER V CONCLUSION 74 5.1 Research Discussion 74 5.2 Research Limitations 76 5.3 Future Research 77 REFERENCES 78

    Antonopoulos, I., Robu, V., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis, A., Flynn, D., Elizondo-González, S., & Wattam, S. (2020). Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2020.109899.

    Ayoubi, H., Tabaa, Y., & Kharrim, M. (2023). Artificial Intelligence in Green Management and the Rise of Digital Lean for Sustainable Efficiency. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202341201053.

    Banker, R., Byzalov, D., & Plehn-Dujowich, J. (2014). Demand Uncertainty and Cost Behavior. The Accounting Review, 89, 839-865. https://doi.org/10.2308/ACCR-50661.

    Banker, R., & Thrall, R. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of Operational Research, 62, 74-84 https://www.sciencedirect.com/science/article/pii/037722179290178C?via%3Dihub

    Beckmann, J., & Goode, N. (2017). Missing the wood for the wrong trees: on the difficulty of defining the complexity of complex problem solving scenarios. Journal of Intelligence, 5(2), 15. https://doi.org/10.3390/jintelligence5020015

    Cole, H. L., & Ohanian, L. (1996). Reassessing aggregate returns to scale with standard theory and measurement. Journal of Economic Growth. https://researchdatabase.minneapolisfed.org/concern/publications/ff365541m

    Cox, A. M., Pinfield, S., & Rutter, S. A. (2019). Extending McKinsey’s 7S model to understand strategic alignment in academic libraries. Library Management. https://www.emerald.com/insight/content/doi/10.1108/LM-06-2018-0052/full/html

    Czinki, A., & Hentschel, C. (2016). Solving Complex Problems and TRIZ. Procedia CIRP, 39, 27-32. https://doi.org/10.1016/J.PROCIR.2016.01.161.

    Devalla, S., & Yogix, M. (2023). Building Trust in AI -A Simplified Guide to Ensure Software Quality. Journal of Soft Computing Paradigm. https://doi.org/10.36548/jscp.2023.3.001 .

    Funk, J. (2010). Exponential improvements and increasing returns to scale. 2010 IEEE International Conference on Management of Innovation & Technology, 506-511. https://ieeexplore.ieee.org/document/5492767

    Gajović, A. (2022). Possibilities of applying the 7S model in a small processing company. Tehnika, 77(6), 761–766. https://doi.org/10.5937/tehnika2206761g

    Handfield, R., & Steininger, W. (2005). An Assessment of Manufacturing Customer Pain Points: Challenges for Researchers. Supply Chain Forum: An International Journal, 6, 15 - 6. https://doi.org/10.1080/16258312.2005.11517143.

    Hoerl, R., Jensen, W., & Mast, J. (2021). Understanding and addressing complexity in problem solving. Quality Engineering, 33, 612 - 626. https://doi.org/10.1080/08982112.2021.1952230.

    Jung, J., Blau, G., Pekny, J., Reklaitis, G., & Eversdyk, D. (2004). A simulation-based optimization approach to supply chain management under demand uncertainty. Comput. Chem. Eng., 28, 2087-2106. https://doi.org/10.1016/j.compchemeng.2004.06.006

    Khmelnitsky, E., & Gerchak, Y. (2002). Optimal control approach to production systems with inventory-level-dependent demand. IEEE Trans. Autom. Control., 47, 289-292. https://doi.org/10.1109/9.983360.

    Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Inf. Manag., 58, 103434. https://doi.org/10.1016/j.im.2021.103434.

    Pospisil, J. Z., & Zavodna, L. S. (2022). An Insight to the World of Female Entrepreneurship: Systematic Literature Review of the Phenomenon using the Mckinsey 7S Model. Foundations of Management, 14(1), 51–66. https://doi.org/10.2478/fman-2022-0004

    Sadiq, R., Safie, N., Rahman, A., & Goudarzi, S. (2021). Artificial intelligence maturity model: a systematic literature review. PeerJ Computer Science, 7. https://doi.org/10.7717/peerj-cs.661.

    Schiller, S., Schwartz, L., & Murphy, S. (2020). Performance Assessments of Demand Flexibility from Grid-Interactive Efficient Buildings: Issues and Considerations. https://doi.org/10.2172/1644287.

    Schreckenberg, F., & Moroff, N. U. (2021). Developing a maturity-based workflow for the implementation of ML-applications using the example of a demand forecast. Procedia Manufacturing, 54, 31–38. https://doi.org/10.1016/j.promfg.2021.07.006

    Suwanda, S., & Nugroho, B. Y. (2022). Literature reviews: McKinsey 7S model to support organizational performance. Technium Social Sciences Journal, 38, 1–9. https://doi.org/10.47577/tssj.v38i1.7744

    Westfield, F. M. (1966). Technical progress and returns to scale. The Review of Economics and Statistics, 48, 432. https://www.jstor.org/stable/1924622?origin=crossref

    Yablonsky, S. (2021). AI-driven platform enterprise maturity: from human led to machine governed. Kybernetes, 50, 2753-2789. https://doi.org/10.1108/K-06-2020-0384.

    Yang, Z. (2019). Increasing returns to scale in energy-intensive sectors and its implications on climate change modeling. Energy Economics. https://www.sciencedirect.com/science/article/pii/S0140988319301987?via%3Dihub

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE