簡易檢索 / 詳目顯示

研究生: 曾繁宗
Tzeng, Fan-Tzung
論文名稱: 304L不銹鋼之惰性氣體鎢棒電弧銲及遮蔽金屬電弧銲銲接件的高速撞擊行為與顯微結構之特性分析
The Dynamic Impact Response and Microstructural Evolution of 304L Stainless Steel GTAW and SMAW Joints
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 133
中文關鍵詞: 沃斯田鐵不銹鋼霍普金森試驗機絕熱剪切帶殘留肥粒鐵惰性氣體鎢棒電弧銲遮蔽金屬電弧銲麻田散鐵構成方程式
外文關鍵詞: SMAW, shield metal arc welding, flow stress, martensite, dimple, Zerilli-Armstrong, Hopkinson bar, ferrite, GTAW, gas tungsten arc welding, stainless steel, austenitic, strain rate sensitivity, 304L
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用一維波傳理論為基礎的霍普金森動態試驗機,來探討並比較304L不銹鋼之惰性氣體鎢棒電弧銲(GTAW)及遮蔽金屬電弧銲(SMAW)銲接件,在不同應變速率下的動態塑性變形行為。其測試溫度為25℃,應變速率條件分別為1500/s、3000/s、4500/s、6000/s與7500/s五組不同的荷載速率,以研究動態荷載下機械性質及相對之顯微結構變化特性,並分析兩者之間的相關性。同時藉助一構成方程式來描述304L不銹鋼銲接件在高速塑性變形行為,以作為工程應用之依據。
    由實驗數據分析之結果,可得知應變速率及應變量對304L不銹鋼之GTAW及SMAW銲接件的機械性質影響顯著,其塑流應力值隨應變速率的上升而增加。同樣的,應變速率的增加亦導致銲接件之加工硬化率及應變速率敏感性的上升,而熱活化體積則隨著應變速率的上升而下降。隨著應變量的增加,加工硬化率與應變速率敏感性呈現下降,而熱活化體積則有相反的趨勢。比較兩銲接件可知,GTAW銲接件的塑流應力值、應變速率敏感性高於SMAW銲接件,而熱活化體積與破壞應變量則是SMAW銲接件較大。由破壞形貌觀察,可知銲接件的破壞模式為絕熱剪切破壞,在絕熱剪切帶中所形成的微裂縫連結產生破壞。在破斷面上可發現主要是由韌窩所組成,屬於延性破壞。從TEM觀察分析GTAW與SMAW銲接件高速撞擊後顯微組織的變化,可知差排密度、雙晶的形成和 麻田散鐵轉換,皆隨應變速率的增加而增加,經比較後可發現GTAW銲接件的差排、雙晶密度與 麻田散鐵含量皆高於SMAW銲接件外。此外,經由定量分析可知差排密度、雙晶密度及 麻田散鐵與加工硬化應力為線性關係。最後,藉由Zerilli-Armstrong模式之構成方程式配合本實驗所得之材料參數,可精確的描述304L不銹鋼之惰性氣體鎢棒電弧銲(GTAW)及遮蔽金屬電弧銲(SMAW)銲接件,在高速撞擊下的塑性變形行為。

    The dynamic impact response and microstructural evolution of 304L stainless steel GTAW and SMAW joints were studied by means of split-Hopkinson bar and microscope (OM, SEM and TEM). Experiments were performed at room temperature under strain rates from 1500 to 7500 . The Zerilli-Armstrong constitutive equation with the experimentally determined specific material parameters successfully describe the flow behaviour of the material for the tested conditions. Results indicate the material properties of 304L stainless steel GTAW and SMAW joints depend strongly on strain rate. Flow stress and strain rate sensitivity increase with increasing strain rate, but decrease for fracture strain and activation volume. SEM fractography shows HAZ and weld metal fractures both dominated by microcrack formation in adiabatic shear bands. Increasing dislocation density, twinning and martensite transformation are observed as strain rate increases, and are identified as the strengthening mechanisms of 304L stainless steel weldments. However, martensite can be detected only minimally in the weldments of deformed specimens. 304L stainless steel GTAW joints are found to have higher flow stress but lower fracture strain than SMAW joints.

    中文摘要............................ I ABSTRACT............................ III 誌謝................................ IV 總目錄.............................. V 表目錄.............................. IX 圖目錄.............................. X 符號說明............................ XVII 第一章 緒論......................... 1 1-1 前言............................ 1 1-2 文獻回顧........................ 2 1-3 本文研究範疇 ..................3 第二章 理論說明..................... 4 2-1 銲接理論說明.................... 4 2-1-1 組成過冷理論與凝固模式........ 4 2-1-2 沃斯田鐵不銹鋼之凝固過程...... 5 2-1-3 合金成份對銲接性的影響........ 6 2-1-4 304L不銹鋼所適用的銲材........ 7 2-1-5 肥粒鐵含量之量測.............. 8 2-2 動態測試理論說明................ 9 2-2-1 塑性變形之機械測試類別........ 9 2-2-2 一維波傳理論.................. 11 2-2-3 霍普金森桿原理................ 13 2-2-4 材料塑性變形行為之特性........ 16 2-2-5 圓柱壓縮試驗法................ 18 2-2-6 材料變形構成方程式............ 19 第三章 實驗方法與步驟............... 32 3-1 實驗材料........................ 32 3-1-1 母材.......................... 32 3-1-2 銲材.......................... 32 3-2 試件之準備...................... 33 3-2-1 銲接試件尺寸.................. 33 3-2-2 銲接試驗 ..................33 3-2-3 壓縮試件...................... 34 3-3 實驗設備........................ 34 3-3-1 霍普金森動態撞擊試驗機........ 35 3-3-2 訊號處理裝置.................. 36 3-3-3 壓縮試驗機.................... 36 3-3-4 磁性量測設備.................. 36 3-3-5 光學顯微鏡(OM)................ 36 3-3-6 掃瞄式電子顯微鏡(SEM)......... 37 3-3-7 穿透式電子顯微鏡(TEM)......... 37 3-3-8 雙噴射式電解拋光機............ 37 3-4 實驗方法與步驟.................. 37 3-4-1 動態衝擊實驗.................. 37 3-4-2 壓縮試驗...................... 38 3-4-3 微硬度試驗.................... 39 3-4-4 肥粒鐵含量之量測.............. 40 3-4-5 麻田散鐵含量之量測............ 40 3-4-6 試件金相之觀察(OM)............ 40 3-4-7 破斷面之觀察(SEM)............. 41 3-4-8 穿透式電子顯微鏡(TEM)......... 41 第四章 實驗結果與討論............... 49 4-1 銲接件之基本性質分析............ 49 4-1-1 銲接件金相組織分析............ 49 4-1-2 肥粒鐵含量之量測.............. 50 4-1-3 微硬度分析.................... 51 4-2 應力-應變曲線圖之討論........... 52 4-3 應變速率效應.................... 53 4-4 熱活化體積...................... 55 4-5 理論昇溫量之探討................ 56 4-6 材料變形構成方程式.............. 57 4-7 微觀組織........................ 58 4-7-1 破壞特徵分析.................. 58 4-7-2 TEM顯微結構分析............... 60 第五章 結論......................... 125 參考文獻............................ 127

    [1]Y. Bai, B. Dodd., Adiabatic Shear Localization: occurrence, theories, and applications, 1th Edition, Pergamon Press, New York, 1992.
    [2] B. C. Howard, Modern Welding Technology, 4th Edition, Prentice Hall, New Jersey, 1998.
    [3] D. Pecker, I. M. Bernstein, Handbook of Stainless Steels, McGraw-Hill, New York, 1977.
    [4] R. A. Lula, J.G. Parr, A. Hanson, Stainless Steel, American Society for Metals, Metals Park, OH, 1986.
    [5] S. L. Semiatin, J.H. Holbrook, Plastic Flow Phenomenology of 304L Stainless Steel, Metall. Trans. A, Vol. 14, pp.1681-1695, 1983.
    [6] S. Venugopal, S.L. Mannan, Y.V.R.K. Prasad, Optimization of Hot Workability in Stainless Steel-Type AISI 304L Using Processing Maps, Metall. Trans. A, Vol. 23, pp. 3093-3103, 1992.
    [7] D. Sundararman, R. Divakar, V. S. Rauhunathan, Microstructural Features of a Type 304L Stainless Steel Deformed at 1473K in the Strain Rate Interval 10-3 to 102 s-1, Scripta Metall. Mater., Vol. 28, pp.1077-1082, 1993.
    [8] B. S. Rho, H. U. Hong, S. W. Nam, The Effect of δ-Ferrite on Fatigue Cracks in 304L Steels, Inter. J. Fatig., Vol. 22, pp.683-690, 2000.
    [9] M. C. Mataya, E. L. Brown, M. P. Riendau, Effect of Hot Working on Structure and Strength of Type 304L Austenitic Stainless Steel, Metall. Trans. A, Vol. 21, pp.1969-1987, 1990.
    [10] D.P. HarveyⅡ, J. B. Terrell, T. S. Sudarshan, M. R. Louthan, Jr, Participation of Hydrogen in the Impact Behavior of 304L Stainless Steel, Eng. Fract. Mech., Vol. 46, No. 3, pp.455-464, 1993.
    [11] S. L. Semiatin, J. H. Holbrook, Failure Behavior of 304L Stainless Steel in Torsion, Metall. Trans. A, Vol. 14, pp.2091-2099, 1983.
    [12] W. S. Lee, C. F. Lin, Impact properties and Microstructure evolution of 304L Stainless Steel, Mater. Sci. Eng A., Vol. 308, pp.124-135, 2001.
    [13] W. S. Lee, C. F. Lin, Effects of Prestraining on the Impact Response and Twinning Structure of 304L Stainless Steel, Mater. Trans., Vol. 42, pp.2080-2086, 2001.
    [14] P. Bilmes, A. Gonzalez, C. Llorente, M. Solari, Effect of δ Ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints, Weld. Int., Vol. 10, pp.797-808, 1996.
    [15] T. Takalo, N. Suutala, T. Moisio, Influence of Ferrite Content on its Morphology in Some Austenitic Weld Metals, Metall. Trans. A, Vol. 7A, No. 10, pp.1591-1592, 1976.
    [16] W. A. Baeslack, D. J. Duquette, W. F. Savage, Effect of Ferrite Content on Stress Corrosion Cracking in Duplex Stainless Steel Weld Metals, Corrosion, Vol. 35, No. 2, pp.45-54, 1979.
    [17] T. Haruna, T. Shibata, R. Toyota, Initiation and Propagation of Stress Corrosion Cracks for Type 304L Stainless Steel in Chloride Solutions Containing Thiosulfate, Corrosion Sci., Vol. 39, No. 10-11, pp.1873-1882, 1997.
    [18] Y. C. Lin, P. Y. Chen, Effect of Nitrogen Content and Retained Ferrite on the Residual Stress in Austenitic Stainless Steel Weldments, Mater. Sci. Eng. A, Vol. 307, pp.165-171, 2001.
    [19] T. Yuri, T. Ogata, M. Saito, Y. Hirayama, Effect of Welding Structure and δ-Ferrite on Fatigue Properties for TIG Welded Austenitic Stainless Steels at Cryogenic Temperatures, Cryogenics, Vol. 40, pp.251-259, 2000.
    [20] G. M. Reddy, T. Mohandas, K. K. Papukutty, Effect of Welding Process on the Ballistic Performance of High-Strength Low-Alloy Steel Weldments, J. Mater. Process. Technol., Vol. 74, pp.27-35, 1998.
    [21] O.Kamiya, K. Kumagai, Effect of Microstructure on Impact Fracture Behaviour of SUS304L SAW Joint at Low Temperature, J. Mater. Sci., Vol. 25, pp.2017-2024, 1990.
    [22] S. Kou, Welding Metallurgy, J. Wiley & Sons, New York, 1987.
    [23] E. Folkhard, G. Rabensteiner, E. Pertender, H. Schabereiter, J. Tösch, Welding Metallurgy of Stainless Steels, Springer-Verlag, New York,1984
    [24] 曾光宏,沃斯田鐵不銹鋼銲接性之探討,機械技術雜誌,第160期, pp.96-103,1998。
    [25] 王振欽,銲接學, 登文書局,1987年9月。
    [26] R. D. Curran, L. Seaman and D. A. Shockey, Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain- Rate Phenomena in Metal: Concepts and Applications, pp. 22-26, 1980.
    [27] U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
    [28] U. S. Lindholm and L. W. Yeakly, High Strain Rate Tension and Compression, Exp. Mech., Vol. 3, pp. 81-88, 1983.
    [29] M. A. Meyers, Elastic Waves, Dynamics Behavior of Materials, Jhon Wiely & Son, pp. 23-65, 1994.
    [30] Jonas A. Zukas, Theodore Nicholas, Hallock F. Swift, Longin B. Greszczuk, Donald R. Curran, Impact Dynamics, John Wiley & Sons, pp. 287, 1981.
    [31] J. D. Campbell, Dynamic Plasticity-Macrosopic and Microscopic Aspects, Mat. Sci. Eng., Vol. 12, pp. 3-21, 1973.
    [32] D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
    [33] J. D. Campbell and W. G. Ferguson, Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel, Phil. Mag., Vol. 21, pp. 63-82, 1970.
    [34] A. M. Eleiche and J. D. Campbell, Strain-Rate Effects During Reverse Torsional Shear, Exp. Mech., Vol. 16, pp. 281-290, 1976.
    [35] J. Harding and J. Huddart, The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain, Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
    [36] A. Seeger, Dislocation and Mechanical Properties of Crystals, Phil. Mag., Vol. 46, pp. 1194-1217, 1955.
    [37] U. S. Lindholm and L. M. Yeakly, Dynamic Deformation of Single and Polycrystalline Aluminum, J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.
    [38] W. G. Ferguson, A. Kumar and J. E. Dorn, Dislocation Damping in Aluminum at High Strain Rates, J. Appl. Phys., Vol. 38, No. 4, pp. 1863-1869, 1967.
    [39] J. Weertman, Uniformly Moving Transonic and Supersonic Dislocations, J. Appl. Phys., Vol. 38, pp. 5293-5301, 1967.
    [40] J. D. Campbell and A. R. Dowling, Behaviour of Materials Subjected to Dynamic Incremental Shear Loading, J. Mech. Phys. Solids, Vol. 18, pp. 43-63, 1970.
    [41] J. Harding, The Effect of High Strain Rate on Material Properties, Materials at High Strain Rates, pp. 133-186, 1987.
    [42] G. E. Dieter, Workability Testing Techniques, pp. 57-59, Metals Park, Ohio, ASM, 1984.
    [43] M. L. Lovato, and M. G. Stout, Compression Testing Techniques to Determine the Stress/Strain Behaviour of Metals Subject to Finite Deformation, Metall. Trans. A., Vol. 23A, pp. 935-951, 1992.
    [44] J. C. Gelin, J. Oudin, and Y. Ravalard, Determination of the Flow Stress-Strain Curve for Metals Form Axisymmeetric Upsetting, J. of Mech. Work. Tech., Vol. 5, pp. 297-308, 1981.
    [45] W. Johnson, Impact Strength of Material, Edward Arnold, pp.134-135, 1972.
    [46] L.E. Malvern, J Appl. Mech., Vol.18, pp. 261-281, 1951.
    [47] Y. Bai, B. Dodd, Adiabatic Shear Location, Pergamon Press, pp. 108, 1991.
    [48] J. D. Campbell, A. M. Eleiche, amd M. C. C. Tsao, Fundamental Aspects of Structural Alloy Design, Plenum Publishing Corp. New York, pp545-563, 1977.
    [49] J. Duffy, Proc. Workshop on Shear Localization, Brown Univ. Report MRL-E-127, pp. 19-29, 1981.
    [50] H. Kobayashi and B. Dodd, A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth, Int. J. Impact Eng., Vol. 8, pp. 1-13, 1989.
    [51] H. Kobayashi and B. Dodd, Formation of Adiabatic Shear Bands in Steel and Titanium Twisted at Dynamic Rates, J. Jpn. Soc. Technol. Plast., Vol. 29, pp. 1152-1158, 1988.
    [52] F. J. Zerilli and R. W., Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., Vol. 61, pp. 1816-1825, 1987.
    [53] F.J. Zerilli, R.W. Armstrong, Constitutive Equation for HCP Metals and High Strength Alloy Steels, High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, Vol. 48, ASME, New York, pp. 121-126, 1995.
    [54] R. W. Klopp, R. J. Clifton and T. G. Shawki, Pressure Shear Impact and Dynamic Viscoplastic Response of Metals, Mechanics of Materials: an International Journal, Vol. 4, pp.375-385, 1985.
    [55] M. Zhou, A. Needleman and R. J. Clifton, Finite Element Simulations of Shear Localization in Plate Impact, J. Mech. Phys. Solids, Vol. 42, pp. 423-458, 1994.
    [56] G. E. Dieter, Thermally Activated Deformation, Mechanical Metallurgy, pp. 310-315, 1988.
    [57] Emin Bayraktar, Sabri Altintas, Some Problems in Steel Sheet Forming Processes, J. Mat. Process. Technol., Vol. 80-81, pp.83-89, 1998.
    [58] R. K. Ham, Phil. Mag., Vol.6, pp. 1183, 1961.
    [59] M. A. Meryers, Dynamic Behavior of Materials, John Wiley & Sons, pp. 420-426, 1994.
    [60] M. A Meryers, Mechanical Metallurgy Principles and Applications, Prentice-Hall, pp. 284-289, 1984.

    下載圖示 校內:立即公開
    校外:2002-07-11公開
    QR CODE