簡易檢索 / 詳目顯示

研究生: 李廷洋
Lee, Ting-Yang
論文名稱: 三角晶格聲子晶體的彈性波能谷邊緣態研究
Topological Valley Edge States of Elastic Waves in Triangular Lattice Phononic Crystals
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 142
中文關鍵詞: 拓樸絕緣體聲子晶體彈性波量子能谷霍爾效應邊緣模態
外文關鍵詞: topological insulators, phononic crystals, elastic waves, quantum valley Hall effect, edge mode
相關次數: 點閱:127下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,拓樸絕緣體備受關注,其為一種特殊材料,內部不導電,但在結構表面或介面處可允許電流通過。透過量子霍爾效應,可類比至聲子晶體。藉由改變結構對稱性或施加外部場,打破空間或時間反演對稱,使材料色散曲線中的狄拉克點被拉開並產生拓樸相變,便可利用邊緣模態控制波的傳遞方向。
    本文設計樑中間嵌入散射柱組成單位晶胞,接著改變其結構的對稱性,同時導入量子能谷霍爾效應,研究彈性波於固體材料中的波傳現象。首先,建立結構模型,利用有限元素法商業軟體 COMSOL Multiphysics® 計算出其能帶結構,並設計材料性質與結構參數找出狄拉克點,並討論改變結構參數對於狄拉克點的影響。接著改變散射柱離晶格中心距離拉開狄拉克點並討論模態反轉現象。接著利用超晶胞法分析兩種拓樸不等價聲子晶體所組成的介面並於邊體關係圖尋找能量集中於介面處之邊緣模態。最後,於結構中激發於邊緣模態頻率範圍之彈性波,進而驗證其特殊波傳行為。
    分別討論四種不同形狀之散射柱,利用超晶胞法找出各自邊緣模態頻率範圍,並設計直線及Z字形全波模擬結構,這兩種全波模擬結構個別包含三種路徑:完美介面、亂序、缺陷。藉由比較三種路徑及Z字形結構的彎角路徑驗證邊緣模態對於抑制後向散射及缺陷免疫的穩健性,並參考位移穿透頻譜圖確認其高傳輸性質。利用具有拓樸性質之聲子晶體,將可應用於設計彈性波波導或是獵能器等裝置。

    In the present study, a two-dimensional phononic crystal with quantum valley Hall effect is proposed to exhibit the topologically protected edge mode in elastic wave, which only occurs at the interface between two topologically inequivalent phononic crystals. The unit cell of the topologically phononic crystal is composed of the scattering pillars embedded in the middle of the beam, and the Dirac point at the K-point in the irreducible Brillouin zone is investigated. Also, two topological inequivalent phononic crystals are obtained by breaking the spatial inversion symmetry of the primitive cell, and then study the edge mode at the interface by the supercell method and the full-wave simulation by the finite element analysis software COMSOL Multiphysics®. The robustness of edge mode for limiting the backscattering and defect immunity is perfectly verified. Our study may offer a brand new application in high-efficiency waveguide and energy harvesting devices.

    中文摘要 I 英文摘要 II 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XXI 符號 XXII 第一章 緒論 1 1-1前言 1 1-2 文獻回顧 2 1-2-1 光/聲子晶體 2 1-2-2拓樸絕緣體 3 1-2-3拓樸學與量子霍爾效應 3 1-2-4量子能谷霍爾效應(Quantum Valley Hall Effect) 4 1-3本文架構 5 第二章 背景理論與數值方法 9 2-1前言 9 2-2固態物理學的晶體理論 10 2-2-1基本定義 10 2-2-2實晶格與倒晶格(Reciprocal Lattice) 10 2-2-3布洛赫定理(Bloch Theorem)與布里淵區(Brillouin Zones) 12 2-3彈性力學與波傳理論 13 2-4有限元素法 15 2-4-1 平面應力及平面應變問題 15 2-4-2 固體力學模組之有限元素法 17 2-5拓樸學能帶理論與量子霍爾效應 21 2-5-1貝里相位(Berry phase)與能谷陳數(valley Chern number) 21 2-5量子霍爾效應家族 23 2-5-1整數量子霍爾效應 23 2-5-2量子自旋霍爾效應 24 2-5-3量子能谷霍爾效應 24 第三章 三角晶格排列之圓形散射柱拓樸聲子晶體 31 3-1前言 31 3-2 幾何模型建立與能帶分析 31 3-2-1晶格結構 31 3-2-2二維拓樸聲子晶體模型能帶結構分析 32 3-2-3利用散射柱距中心之不對稱性破壞空間對稱之能帶結構 33 3-3 I/II型拓樸聲子晶體邊體關係(Edge-Bulk Correspondence)及全波模擬(Full Wave)分析 34 3-3-1 介面邊體關係圖 34 3-3-2 直線全波模擬分析 35 3-4 A/B型拓樸聲子晶體能帶結構 36 3-5 A/B型拓樸聲子晶體邊體關係及全波模擬分析 37 3-5-1 A/B型介面邊體關係圖 37 3-5-2 A/B型全波模擬分析 38 第四章 不同幾何形狀散射柱拓樸聲子晶體之討論 72 4-1 前言 72 4-2 正三角形散射柱拓樸聲子晶體 72 4-2-1 幾何模型建立及能帶分析 72 4-2-2邊體關係及全波模擬分析 73 4-3 正方形散射柱拓樸聲子晶體 76 4-3-1 幾何模型建立及能帶分析 76 4-3-2邊體關係及全波模擬分析 76 4-4 橢圓形散射柱拓樸聲子晶體 79 4-4-1 幾何模型建立及能帶分析 79 4-4-2邊體關係及全波模擬分析 79 4-5 不同形狀散射柱邊緣模態討論 81 第五章 綜合討論與未來展望 135 5-1綜合討論 135 5-2未來展望 136 參考文獻 137

    [1] Nobelprize.org(2016)。The Nobel Prize in Physics 2016- Press Release。民107年6月20日,取自: https://www.nobelprize.org/nobel_prizes/physics/laureates /2016/press.html
    [2] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, & R. D. Meade, “Photonic Crystal: Molding the Flow of the Light, ” Princeton University Press. (2008)
    [3] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letter, Vol. 58, No. 20, pp. 2059-2062. (1987)
    [4] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys Rev Lett, Vol. 58, No. 23, pp. 2486-2489. (1987)
    [5] E. Yablonovitch and T. J. Gmitter, “Photonic Band Structure: The face-centered-cubic case,” Physical Review Letter, Vol. 63, No.18, pp. 1950-1953. (1989)
    [6] L. Brillouin, “Wave propagation in periodic structures: electric filters and crystal lattices” 2nd ed. Dover, New York. (1953).
    [7] L. Cremer and H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural periodic systms),” Archiv der Elektrischen Ubertragung, Vol. 7, 261. (1953)
    [8] M. A. Heckl, “Investigations on the vibrations of grillage and other simple beam structure,” Journal of the Acoustical Society of America, Vol. 36, 1335. (1964)
    [9] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani,"Acoustic band structure of periodic elastic composites", Physical Review Letter, Vol. 71, No. 13, pp. 2022-2025. (1993)
    [10] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B.Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites”, Physical Review B, Vol. 49, No. 4, pp. 2313-2322. (1994)
    [11] M. S. Kushwaha, and P. Halevi, “Band-gap engineering in periodic elastic composites”, Applied Physics Letters, Vol. 64, No.9, pp. 1085-1087. (1994)
    [12] M. S. Kushwaha, “Classical band structure of periodic elastic composites”, International Journal of Modern Physics B, Vol. 10, No. 9, pp.977-1094. (1996)
    [13] R. Martinezsala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares and F. Meseguer, “SOUND-ATTENUATION BY SCULPTURE” Nature, Vol. 378, No. 6554, pp. 241-241. (1995)C. L. Kane, “Topological Band Theory and the ℤ2 Invariant” Contemporary Concepts of Condensed Matter Science, Vol. 6, pp. 3-34. (2013)
    [14] K. von Klitzing, G. Dorda and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance” Physical Review Letter, Vol. 45, pp. 494-497. (1980)
    [15] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential” Physical Review Letter, Vol. 49, pp. 405-408. (1982)
    [16] T. Fukui, Y. Hatsugai, and H. Suzuki, “Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances”, Journal of the Physical Society of Japan, Vol. 74, pp. 1674-1677. (2005)
    [17] Q. Niu, D. J. Thouless, and Y.-S. Wu, “Quantized Hall conductance as a topological invariant”, Physical Review B, Vol. 31, pp. 3372-3377. (1985)
    [18] C. L. Kane, “Topological Band Theory and the ℤ2 Invariant” Contemporary Concepts of Condensed Matter Science, Vol. 6, pp. 3-34. (2013)
    [19] M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 392, pp. 45-57. (1984)
    [20] Y. Hatsugai, “Chern Number and Edge States in the Integer Quantum Hall Effect” Physical Review Letters, Vol. 71, pp. 3697-3700. (1993)
    [21] F. D. Haldane, “Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly” Physical Review Letter, Vol. 61, pp. 2015-2018. (1988)
    [22] C. L. Kane, and E. J. Mele, “Quantum Spin Hall Effect in Graphene” Physical Review Letter, Vol. 65, p. 226801. (2005)
    [23] J. E. Hirsch, “Spin Hall Effect” Physical Review Letter, Vol. 83, p. 1834. (1999)
    [24] S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless Quantum Spin Current at Room Temperature” arXiv:cond-mat/0308167v1. (2003)
    [25] B. A. Bernevig, and S. C. Zhang, “Quantum spin Hall effect” Physical Review Letter, Vol. 96, pp. 106802. (2006)
    [26] B. A. Bernevig, T. L. Hughes, S. C. Zhang, “Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells” Science, Vol. 314, pp. 1757-1761. (2006)
    [27] W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, Y. Yao, “First-principles investigations on the Berry phase effect in spin–orbit coupling materials” Computational Materials Science, Vol. 112, pp. 428-447. (2016)
    [28] O.A. Pankratov, S.V. Pakhomov, B.A. Volkov, “Supersymmetry in Heterojunctions: Band-inverting Contact on the Basis of Pb-SnTe and Hg-CdTe” Solid State Communications, Vol. 61, pp.93-97. (1987)
    [29] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp,…,S. C. Zhang, “Quantum Spin Hall Insulator State in HgTe Quantum Wells” Science, Vol. 318, pp. 766-770. (2007)
    [30] Rycerz, A., J. Tworzydlo, and C. W. J. Beenakker. “Valley Filter and Valley Valve in Graphene.” Nature Physics, Vol. 3, pp. 172-175. (2007)
    [31] Xiao, D., W. Yao, and Q. Niu. “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport.” Physical Review Letter, Vol. 99, pp. 236809. (2007)
    [32] D. Xiao, W. Yao, and Q. Niu, Physical Review Letter. 99, 236809. (2007)
    [33] W. Yao, D. Xiao, and Q. Niu, Physical Review Letter. B 77, 235406. (2008)
    [34] F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald, Physical Review Letter. 106, 156801. (2011)
    [35] Z. Zhu, A. Collaudin, B. Fauque, W. Kang, and K. Behnia, Nature Phys. advance online publication. (2011)
    [36] Gerlach, W., Stern, O., 1922, Zeitschrift für Physik, 9, 349.
    [37] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang and Z. Liu, “Observation of topological valley transport of sound in sonic crystals”, Nature Physics, Vol. 13, No.4, pp. 369-374. (2017)
    [38] J. Lu, C. Qiu, M. Ke and Z. Liu, “Valley vortex states in sonic crystals”, Physical review letter, Vol. 116, No.9, p. 093901. (2016)
    [39] X. Ni, M. A. Gorlach, A. Alu and A. B. Khanikaev, “Topological edge states in acoustic Kagome lattices”, New Journal of Physics, Vol. 19, No.5, p. 055002. (2017)
    [40] S.Y. Huo, J. J. Chen, H. B. Huang and G. L. Huang, “Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins”, Scientific reports, Vol. 7, No.1, p. 10335. (2017)
    [41] S.Y. Huo, J. J. Chen, H. B. Huang, “Topologically protected edge states for out-of-plane and in-plane bulk elastic waves”, Journal of Physics: Condensed Matter, Vol. 30, No.14, p. 145403. (2018)
    [42] T. W. Liu and F. Semperlotti, “Tunable Acoustic Valley–Hall Edge States in Reconfigurable Phononic Elastic Waveguides”, Physical Review Applied, Vol. 9, No.1, pp. 014001. (2018)
    [43] T. Ma, and G. Shvets, “All-Si Valley-Hall Photonic Topological Insulator“New Journal of Physics, Vol. 18, pp. 025012. (2016)
    [44] M. Tahir, A. Manchon, K. Sabeeh, and U. Schwingenschlögl, “Quantum Spin/Valley Hall Effect and Topological Insulator Phase Transitions in Silicene” Applied Physics Letters, Vol. 102, pp. 162412. (2013)
    [45] M. Tahir, and U. Schwingenschlögl, “Valley Polarized Quantum Hall Effect and Topological Insulator Phase Transitions in Silicene” Scientific Reports, Vol. 3, pp. 1075-1079. (2013)
    [46] F. Zhang, A. H. MacDonald, and E. J. Mele, “Valley Chern Numbers and Boundary Modes in Gapped Bilayerd Graphene” Proceedings of the National Academy of Sciemces of the United States of America, Vol. 110, pp. 10546-10551. (2013)
    [47] Y. Yang, Z. Yang, B. Zhang, “Acoustic Valley Edge States in a Graphene-like Resonator System” Journal of Applied Physics, Vol. 123, p. 091713. (2018)
    [48] S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, “Observation of elastic topological states in soft materials” Nature communications, Vol. 9, no. 1, pp. 1370. (2018)
    [49] J. Chen et al., “Self-ordering induces multiple topological transitions for in-plane bulk waves in solid phononic crystals” Physical Review B, Vol. 98, no. 1, pp. 014302. (2018)
    [50] Y. Jin, D. Torrent, and B. Djafari-Rouhani, “Robustness of conventional and topologically protected edge states in phononic crystal plates” Physical Review B, Vol. 98, no. 5, pp. 054307. (2018)
    [51] M. Yan et al., “On-chip valley topological materials for elastic wave manipulation” Nature Materials, Vol. 17, no. 11, pp. 993. (2018)
    [52] X. Wen, C. Qiu, J. Lu, H. He, M. Ke, and Z. Liu, “Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatters” Journal of Applied Physics, Vol. 123, no. 9, pp. 091703. (2018)
    [53] J. N. Reddy, An introduction to the finite element method, 3rd edition, McGraw-Hill, New York. (2006)
    [54] T. W. Liu and F. Semperlotti, “Tunable Acoustic Valley–Hall Edge States in Reconfigurable Phononic Elastic Waveguides”, Physical Review Applied, Vol. 9, No.1, pp. 014001. (2018)
    [55] J.-J Chen, S.-Y. Huo, Z.-G. Geng, H.-B. Huang and X.-F. Zhu, “Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface”, AIP Advances, Vol. 7, No.11, pp. 115215. (2017)
    [56] Edward McCann, and Vladimir I. F., “Landau-Level Degeneracy and Quantum Hall Effect in a Graphene Bilayer” Physical Review Letter, Vol. 96, pp. 086805. (2006)
    [57] H. Zheng and S. Ravaine, “Bottom-up assembly and applications of photonic materials”, Crystals, Vol. 6, No.5, pp. 54-78. (2016)
    [58] 知乎(2014-06-07)。什麼是分數量子霍爾效應?-每日頭條。民107年6月20日,取自:https://kknews.cc/zh-mo/science/yn6r2k.html

    下載圖示 校內:2021-07-31公開
    校外:2021-07-31公開
    QR CODE