| 研究生: |
陳逸旻 Chen, I-Min |
|---|---|
| 論文名稱: |
以分子動力學模擬Aβ21-30與家族性阿茲海默症之穩定性分析 Stability analysis of the wild-type Aβ21-30 and Familial Alzheimer’s disease using the molecular dynamics simulations |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 阿茲海默氏症 、分子動力學模擬 、Val24-Lys28 迴圈 |
| 外文關鍵詞: | Alzheimer's disease, Val24-Lys28 loop, MD simulation |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
貝他糊蛋白(Aβ)聚合物被認為與阿茲海默式症有很大的關連性。根據實驗發現,Aβ21-30此序列折疊成核過程中會產生Aβ的病理學聚合作用。在本文中,利用分子動力學探討Aβ21-30(wild-type)與其同源物E22Q (Dutch), E22K (Italian), E22G (Arctic), and D23N (Iowa)的初始折疊過程與Val24-Lys28迴圈的穩定性,此迴圈被認為是影響Aβ形成病理學結構的主要原因。這些突變物對於背骨結構的影響性也是一個非常有趣的研究。在本文模擬結果中發現,wild-type和D23N二個模型中會形成穩定的背骨結構。另一方面,替換胺基酸殘基22(Glu)會使得疏水性作用力與鹽橋無法產生,因缺乏此些作用力的產生進而破壞Val24-Lys28迴圈的穩定性;然而在wild-type和D23N結果中,因疏水性作用力和殘基24和27所產生的氫鍵導致背骨結構穩定。此結果顯現,替換胺基酸殘基23(Asp)會增加Val24-Lys28迴圈的穩定性。
The assembly of amyloid β-protein (Aβ) into oligomers is linked to Alzheimer’s disease. Experimental evidences have shown that Aβ21-30, a decapeptide segment of Aβ, nucleates the folding process that results in the pathologic oligomerization of Aβ. In this study, molecular dynamics (MD) techniques were employed to probe the initial stages of folding of the wild type (WT) Aβ21-30 decapeptide and the homologous decapeptides of the E22Q (Dutch), E22K (Italian), E22G (Arctic), and D23N (Iowa) mutants in order to investigate the stabilizing effects of the Val-24—Lys-28 loop, which is postulated as a critical factor effecting Aβ to fold into pathological structures. The stabilizing effects of these mutations on the backbone structure of Aβ21-30 decapeptide are also interested. Numeric results of the present MD simulations show that, with the use of a common simulation time span, only WT and D23N model performed stable backbone conformations in the sense that steady root mean square deviation of the backbone Cα from the initial structure can be achieved in both models. The amino acid substitutions at residues 22 destabilize the Val-24—Lys-28 loop conformation in WT Aβ21-30 because of the lack of the hydrophobic interaction and salt bridge. Moreover, the present results reveal that the stable backbone conformations in WT and D23N Aβ21-30 are mainly attributed to the hydrophobic interaction between the side chains of Val-24 and Lys-28 and the hydrogen bonds Val-24(N)-Asn-27(O) and Asn-27(N)-Val-24(O). The results show that the amino acid substitution at Asp-23 could stabilize the Val-24—Lys-28 loop conformation.
1. Master C. L. and Beyreuther K., Alzheimer’s Disease, Br. Med. J. 316, 446-448, 1998.
2. Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y. Q., Jorm, A., Mathers, C., Menezes, P. R., Rimmer E. and Scazufca, M., Global prevalence of dementia: a Delphi consensus study, Lancet, 366, 2112-2117, 2005.
3. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M. and Teplow, D. B. Amyloid beta-protein fibrillogenesis - Detection of a protofibrillar intermediate, J. Biol. Chem., 272, 22364-22372, 1997.
4. Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T., Observation of metastable A beta amyloid protofibrils by atomic force microscopy, Chem. Biol., 4, 119-125, 1997.
5. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A. and Klein, W. L. Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins, Proc. Natl. Acad. Sci. USA, 95, 6448–6453, 1998.
6. Lazo, N., Grant, M. A., Condron, M. C., Rigby, A. C. and Teplow, D. B.,On the nucleation
of amyloid β-protein monomer folding, Protein Sci., 14, 1581-1596, 2005.
7. Chen, W., Mousseau, N., and Derreumaux, P., The conformations of the amyloid-β(21–30)fragment can be described by three families in solution, J. Chem. Phys., 125, 084911-094918, 2006.
8. Levy, E., Carman, M. D., Fernandez-Madrid, I. J., Power, M. D., Lieberburg, I., van Duinen, S. G., Bots, G. T. A. M., Luyendijk, W., and Frangione, B., Mutation of the Alzheimer’s disease amyloid gene in hereditary cerevral-hemorrhage, Dutch type, Science, 248, 1124, 1990.
9. Bugiani, O., Padovani, A., Magoni, M., Andora, G., Sgarzi, M., Savoiardo, M., Bizzi, A., Giaccone, G., Rossi, G. and Tagliavini, F., An Italian type of HCHWA., Neurobiol. Aging, 19, S238, 1998.
10. Kamino, K., Orr, H. T., Payami, H., Wijsman, E. M., Alonso, M. E., Pulst, S. M., Anderson, L., O’dahl, S., Nemens, E., White, J. A., Sadovnick, A. D., Ball, M. J., Kaye, J., Warren, A., Mcinnis, M., Antonarakis, S. E., Korenverg, J. R., Sharma, V., Kukull, W., Larson, E., Heston, L. L., Martin, G. M., Bird, T. D., and Schellenberg, G. D., Linkage and mutational analysis of familial Alzheimer’s disease kindreds for the APP gene region., Am. J. Hum. Genet., 51, 998-1014, 1992.
11. Nilsberth, C., Westlind-Danielsson, A., Eckman, C. B., Condron, M. M., Axelman, K., Forsell, C., Stenh, C., Luthman, J., Teplow, D. B., Younkin, S. G., Naslund, J., and Lannfelt, L., The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced A beta protofibril formation, Nat. Neurosci., 4, 887-893, 2001.
12. Grabowski, T. J., Cho, H. S., Vonsattel, J. P. G., Rebeck, G. W., and Greenberg, S. M., Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy, Ann. Neurol., 49, 697-705, 2001.
13. Murakami, K., Irie, K., Morimoto, A., Ohigashi, H., Shindo, M., Nagao, M., Shimizu, T.and Shirasawa, T.,Synthesis, aggregation, neurotoxicity, and secondary structure ofvarious Aβ 1–42 mutants of familial Alzheimer’s disease at positions 21–23, Biochem. Bioph. Res. Co., 294, 5-10, 2002.
14. Grant, M. A., Lazo, N. D., Lomakin, A., Condron, M. M., Arai, H., Yamin, G., Rigby, A. C., Teplow, D. B., Familial Alzhemier's disease mutations alter the stability of the amyloid beta-protein monomer, Proc. Natl. Acad. Sci,, 102, 16522-16527, 2007.
15. Cruz, L., Urbanc, B., Borreguero, J. M., Lazo, N. D., Teplow, D. B., Stanley, H. E., Solvent and mutation effects on the nucleation of amyloid β-protein folding., Proc. Natl. Acad. Sci, 102, 18258–18263, 2005.
16. Borreguero, J. M., Urbanc, B., Lazo, N. D., Buldyrev, S. V., Teplow, D. B,, Stanley, H. E., Folding events in the 21-30 region of amyloid {beta}-protein (A{beta}) studied in silico, Proc. Natl. Acad. Sci, 102, 6015–6020, 2005.
17. Rudolph Tanzi, Ann, Parson., The Search for the genetic CCauses of Alzheimer’s Disease.
18. Glenner, G. G., and Wong, C. W., Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res.
Commun. 120, 885-890, 1984.
19. Ihara, Y., Nukina, N., Miura, R. and Ogawara, M., Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease, J. Biochem.(Tokyo), 99, 1807-1810 , 1986.
20. Blennow, K., de Leon, M. J., Zetterberg, H., Alzheimer's disease, LANCET, 368, 387-403, 2006.
21. Cappai, R., and white, A. R., Amyloid beta, Int. J. Biochem. Cell Biol., 31, 855-859, 1999.
22. Selkoe, D. J., Alzheimer’s disease: genes, protein, and therapy, Physiol. Rev., 81, 741-766, 2001.
23. Mori, H., Takio, K., Ogawara, M., and Selkoe, D., J. Biol Chem., 267, 17082-17086, 1992.
24. Roher, A. E., Lowenson, J. D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E. and Ball, M. J., Beta-amyloid-(1-42) is a major component of cereberovascular amyloid deposits-implication for the pathology of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 90, 10836-10840, 1993.
25. Mingeot-Leclercq, M. P., Lins, L., Bensliman, M., Van Bambeke, F., Van der Smissen, P., Peuvot, J., Schanck, A. and Brasseur, R., Membrane destabilization induced by beta-amyloid peptide 29-42: Importance of the amino-terminus, Chem. Phys. Lipids, 120, 54-74, 2002.
26. Coles, M., Bicknell, W., Watson, A. A., Fairlie, D. P. and Craik, D. J., Solution Structure of Amyloid b-Peptide(1-40) in a Water-Micelle Environment. Is the Membrane- Spanning Domain Where We Think It Is?, Biochemistry, 37, 11064–11077, 1998.
27. Crescenzi1, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi A. M., Temussi, P. A., and Picone1, D., Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment-Similarity with a virus fusion domain, Eur. J. Biochem., 269, 5642-5648, 2002.
28. Chimon, S., Shaibat, M. A., Jones, C.R., Calero, D. C., Aizezi, B. and Ishii, Y., Evidence of fibril-like β-sheet structure in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid , Nat. Struct. Mol. Biol, 14, 1157-1164, 2007.
29. Walsh, D.M., Klyubin, I., Fadeeva, J. V., Cullen, W.K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J., Naturally secreted oligomers of amyloid _ protein potently inhibit hippocampal long-term potentiation in vivo, Nature, 416, 535–539, 2002.
30. Lovestone, S. and Reynolds, C. H., The phosphorylation of tau: A critical stage in neurodevelopment and neurodegenerative processes, Neuroscience, 78, 309-324, 1997.
31. Perl, D. P. Neuropathology of Alzheimer’s disease and related disorders, Neurol. Clin., 18, 847-864, 2000.
32. Goate, A., Chartierharlin, M.C., Mullan M., Brown, J., Crwford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericakvance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., and Hardy, J., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s Disease, Nature, 349, 704-706, 1991.
33. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J. F., Bruni, A. C., Montesi M, P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R. J., Wasco, W., Dasilva, HAR., Haines, J. L., Pericakvance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., Rommens, J. M., and Stgeorgehyslop, P. H., Cloning of a gene bearing missense mutations in early-oneset familial Alzheimer’s disease, Nature, 375:754-760,1995.
34. Levylahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., Yu, C. E., Jondro, P. D., Schmidt, S. D., Wang, K., Crowley, A. C., Fu, Y. H., Guenette, S. Y., Galas, D., Nemens, E., Wijsman, E. M., Bird, T. D., Schellenberg, G. D. andTanzi, R. E., Candidate gene for the chromsosome 1 familial Alzheimer’s Disease locus, Science, 269, 973-977, 1995.
35. Cruts, M., Rademakers, R., Alzheimer Disease and Frontotemporal Dementia Mutation Database. Available at: http://www.molgen.ua.ac.be/ADMutations/. Accessed 2006.
36. Kowalska, A., Genetic basic of neurodegeneration in familial Alzheimer’s disease, Pol. J. pharmacology, 56, 171-178, 2004.
37. Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., Prada, C. M., Kim, G., Seekins, S., Yager, D., Slunt, H. H., Wang, R., Seeger, M., Levey, A. I., Gandy, S. E., Copeland, N. G., Jenkins, N. A., Price, D. L.and Younkin, S. G., Familial Alzheimer’s disease-linked presenilinl variants elevate AB1-42/1-40 ratio in virto and vivo, Neuron, 17, 1005-1013, 1996.
38. Frank, M., LaFerla, K.,Green N. and Oddo S., Intracellular amyloiod beta in Alzheimers disease, Neuroscience, 8 ,499, 509, 2007.
39. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T., Mar, L., Sorbi, S., Nacmias, B., Piacentini, S., Amaducci, L., Chumakov, I., Cohen, D., Lannfelt, L., Fraser, P. E., Rommens, J. M., and Stgeorgehyslop, P. H., Familial Alzheimers-Disease in kindreds with missense mutations in a gene on chromosome-1 related to the Azlheimers-disease type-3 gene, Nature, 376, 775-778, 1995.
40. De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., Von Figura, K. and Van Leuven, F., Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein., Nature, 391, 387-390, 1998.
41. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L. and Pericakvance, M. A., Gene dose of apolipoprotein E type 4 alleal and the risk of the Alzheimer’s disease in the late onset families, Science, 261, 921-923, 1993.
42. Poirier, J., Davignon, J., Bouthillier, D., Kogan, S., Bertrand P., and Gauthier, S. Apolipoprotein E polymorphism and Alzheimer’s disease, Lancetm, 342, 697-699, 1993.
43. Master, C. L., Cappao, R., Barnham, K. J. and Villemagne, V. L., Molecular mechanisms for the Alzheimer’s disease :implication for neuroimaging and therapeutics, J. Neurochem., 97, 1700-1725, 2006.
44. Mayeux, R., Saunders, A. M., Shea, S., Mirra, S., Evans, D., Roses, A. D., Hyman, B.T., Crain, B., Tang, M. X. and Phelps, C.H., Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer's disease, New Engl. J. Med., 338, 506-511,1998.
45. Glenner, G. G., Wong, C. W., Alzheimers’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Bioph. Res. Co., 120, 885-890, 1984.
46. Hardy, J., Selkoe, D. J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 297, 353-356, 2002.
47. Wang, D. S., Dickson, D. W. and Malter, J. S., β-Amyloid degradation and Alzheimer’s disease, J. Biomed. Biotechnol., 2006, 1-12, 2006.
48. Irie, K., Murakami, K., Masuda, Y., Morimoto, A., Ohigashi, H., Ohashi, R., Takegoshi, K., Nagao, M., Shimizu, T. and Shirasawa, T., Structure of β-Amyloid Fibrils and Its Relevance to their neurotoxicity:Implication for pathogenesis of Alzheimer’s Disease, J. Biosci. Bioeng, 99, 437-447, 2005.
49. Carlson, G. A., A welcoming environment for amyloid plaques, Nat.Neurosci., 6, 328-330, 2003.
50. Wengenack, T. M., Curran, G. L.and Poduslo, J. F., Targeting Alzheimer amyloid plaques in vivo, Nat. Biotechnol., 18, 868-872, 2000.
51. Marx, J., Play and Exercise Protect Mouse Brain From Amyloid Buildup, Science, 307, 1547, 2005.
52. Balbach, J. J., Ishii, Y., Antzutkin, O. N., Leapman, R. D.,Rizzo, N. W., Dyda, F., Reed, J.,and Tycko, R.,Amyloid Fibril Formation by Aβ16-22, a Seven-Residue Fragment of the Alzheimer's β-Amyloid Peptide, and Structural Characterization by Solid State NMR., Biochemistry, 45, 13748, 2000.
53. Ma, B., and Nussinov, R., Stabilities and Conformations of Alzheimer's Beta -amyloid Peptide Oligomers (Abeta 16-22, Abeta 16-35, and Abeta 10-35): Sequence Effects. Proc. Natl. Acad. Sci., 99, 14126-14131, 2002.
54. Boucher, G., Mousseau, N., and Derreumaux, P., Aggregating the amyloid A beta(11-25) peptide into a four-stranded beta-sheet structure, Proteins, 65, 877-888, 2006.
55. Kim J. and Lee, M., Observation of multi-step conformation switching in beta-amyloid peptide aggregation by fluorescence resonance energy transfer, Biochem. Bioph. Res. Co., 316, 393, 2004.
56. Han, W., and Wu, T. D., A strand-loop-strand structure is a possible intermediate in fibril elongation: Long time simulations of amylold-beta peptide (10-35), J. Am. Chem. Soc., 127, 15408-15416, 2005.
57. Benziger T. L. S., Gregory D. M., Burkoth T. S., Miller-Auer H., Lynn D. G., Botto R. E., and Meredith S. C., Propagating structure of Alzheimer's β-amyloid (10-35) is parallel β-sheet with residues in exact register, Proc. Natl. Acad. Sci. USA., 95, 13407-13412, 1998.
58. Guo, J. T., Wetzel, R. and Ying, X., Molecular modeling of the core of A beta amyloid fibrils, Proteins, 57, 357-364, 2004.
59. Talafous, J., Marcinowski, K. J., Klopman G. and Zagorski M. G., Solution structure of residue 1-28 of the amyloid beta-peptide, Biochemistry, 33, 7788-7796, 1994.
60. Petkova, A. T., Leapman, R. D., Guo, Z., Yau, W. M., Mattson, M. P. and Tycko, R., Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils, Science, 307, 262–265, 2005.
61. Kirshenbaum, K. and Daggett, V., pH-Dependent Conformations of the Amyloid β(1 -28) Peptide Fragment Explored Using Molecular Dynamics, Biochemistry, 34, 7629-7639, 1995.
62. Mager, P.P., Molecular Simulation of the Primary and Secondary Structures of the Abeta(1-42)-peptide of Alzheimer's Disease, Med. Res. Rev., 18, 403-430, 1998.
63. Simona, F., Tiana, G., Broglia, A. R. andColombo, G., Modeling the a-helix to b-hairpin transition mechanism and the formation of oligomeric aggregates of the fibrillogenic peptide Aβ(12–28): insights from all-atom molecular dynamics simulations, J. Mol. Graph., 23, 263–273, 2004.
64. Xu, Y., Shen, J., Luo, X., Zhu, W., Chen, K., Ma, J. and Jiang, H., Conformational transition of amyloid β-peptide, Proc. Natl. Acad. Sci., 102, 5403-5407,2005.
65. Flock, D., Colacino, S., Colombo, G., and Di Nola, A., Misfolding of the amyloid beta- protein: A molecular dynamics study, Proteins, 62, 183-192, 2006.
66. Luttmann, E. and Fels, G., All-atom molecular dynamics studies of the full-length β-amyloid peptides, Chem. Phys., 323, 138-147, 2006.
67. Ma, B., and Nussinov, R., Stabilities and Conformations of Alzheimer's Beta -amyloid Peptide Oligomers (Abeta 16-22, Abeta 16-35, and Abeta 10-35): Sequence Effects, Proc. Natl. Acad. Sci., 99, 14126-14131, 2002.
68. Balbach, J. J., Ishii, Y., Antzutkin, O. N., Leapman, R. D., Rizzo, N. W., Dyda, F., Reed, J. and Tycko, R., Amyloid Fibril Formation by A Beta 16-22, a Seven-residue Fragment of the Alzheimer's Beta-amyloid Peptide, and Structural Characterization by Solid State NMR, Biochemistry, 39, 13748-13759, 2000.
69. Zhang, S., Iwata, K., Lachenmann, M. J., Peng, J. W., Li, S., Stimson, E. R., Lu, Y., Felix, A. M., Maggio, J. E. and Lee, J. P., The Alzheimer's Peptide a Beta Adopts a Collapsed Coil Structure in Water, J. Struct. Biol., 130, 130-141, 2000.
70. Massi, F., and Straub J. E., Probing the Origins of Increased Activity of the E22Q "Dutch" Mutant Alzheimer's Beta-amyloid Peptide, Biophys. J. , 81, 697-709, 2001b.
71. Kusumoto, Y., Lomakin, A., Teplow, D. B. and Benedek, G. B., Temperature Dependence of Amyloid Beta-protein Fibrillization, Proc. Natl. Acad. Sci., 95, 12277-12282, 1998.
72. Esler, W. P., Stimson, E. R., Jennings, J. M., Vinters, H.V., Ghilardi, J.R., Lee, J.P., Mantyh, P. W., and Maggio, J. E., Alzheimer's Disease Amyloid Propagation by a Template-dependent Dock-lock Mechanism, Biochemistry, 39, 6288-6295, 2000.
73. Esler, W. P., Stimson, E. R., Ghilardi, J. R., Vinters, H. V., Lee J. P., Mantyh, P. W., and Maggio, J. E., In Vitro Growth of Alzheimer's Disease Beta-amyloid Plaques Displays First-order Kinetics, Biochemistry, 35, 749-757, 1996.
74. Massi, F., and Straub, J. E., Energy Landscape Theory for Alzheimer's Amyloid β-Peptide Fibril Elongation, Proteins, 42, 217-229, 2001.
75. Massi, F., Peng, J. W., Lee, J. P., and Straub, J. E., Simulation Study of the Structure and Dynamics of the Alzheimer's Amyloid Peptide Congener in Solution, Biophys. J., 80, 31-44, 2001.
76. Urbanc, B., Cruz, L., Ding, F., Sammondy, D., Kharey S., Buldyrev, S. V., Stanley, H. E. and Dokholyany, N. V., Molecular Dynamics Simulation of Amyloid β Dimer Formation, Biophys. J. , 87, 2310–2321, 2004.
77. Han W. and Wu, Y. D., Molecular Dynamics Studies of Hexamers of Amyloid-β Peptide (16–35) and Its Mutants: Influence of Charge States on Amyloid Formation, Proteins, 66, 575–587, 2007.
78. Huet A. and Derreumaux, P., Impact of the Mutation A21G (Flemish Variant) on Alzheimer’s β-Amyloid Dimers by Molecular Dynamics Simulations, Biophys. J., 91, 3829–3840, 2006.
79. Yun, S. J., Urbanc, B., Cruz, L., Bitan, G., Teplow, D. B.and Stanley, H. E., Role of electrostatic interactions in amyloid β-protein (Aβ) oligomer formation: A discrete molecular dynamics study, Biophys. J. , 92, 4064-4077, 2007.
80. Zheng, J., Jang, H., Ma, B., Tsai, C. J. and Nussinov, R., Modeling the Alzheimer Aβ17-42 Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and Intramolecular Hydrated Cavities, Biophys. J. , 93, 3046–3057, 2007.
81. Urbanc B., Cruz L., Yun S., Buldyrev S. V., Bitan G., Teplow D. B., and Stanley H. E., In silico study of amyloid β-protein folding and oligomerization, Proc. Natl. Acad. Sci., 101, 17345–17350, 2004.
82. Berendsen, H. J. C., van Der Spoel, D. and van Drunen, R., GROMACSC—a
message-passing parallel molecular-dynamics implementation, Comput. Phys. Commun.
91, 43-56, 1995.
83. Scott, W. R. P., Hunenberger, P. H., Tironi, I. G., Mark, A.E . and Billeter, S. R., Fennen, J., Torad, A. E., Kruger, P. and van Gunsteren, W. F., The GROMOS biomolecular
simulation program package, J. Phys. Chem. A, 103, 3596-3607, 1999.
84. Darden, T., York, D. and Pedersen. L., Particle mesh Ewald—an N∙Log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089-10092, 1993.
85. Kabsch, W., and Sander. C., Dictionary of protein secondary structure-Pattern-recognition
of hydrogen-bonded and geometrical features., Biopolymers, 22, 2577-2637, 1983.
86. Humphrey, W., Dalke, A. and Schulten. K., VMD: visual molecular dynamics. J. Mol. Graph., 14, 27-38, 1996.