簡易檢索 / 詳目顯示

研究生: 楊示豪
Yang, Shih-Hao
論文名稱: 結合近鄰吸引之修正螢火蟲演算法於橡膠隔振器之幾何最佳化設計
A Modified Firefly Algorithm with Neighborhood Attraction for Geometry Optimization Design of Rubber Mounts
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 147
中文關鍵詞: 結合近鄰吸引之修正螢火蟲演算法引擎腳幾何最佳化靜態剛性動態剛性橡膠
外文關鍵詞: modified firefly algorithm with neighborhood attraction, engine mount, geometry optimization, static stiffness, dynamic stiffness, rubber
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究參考修正螢火蟲演算法與結合近鄰吸引之螢火蟲演算法此兩種啟發式演算法,提出結合近鄰吸引之修正螢火蟲演算法,使用十一種最佳化測試函數為範例,比較布穀鳥搜尋演算法、螢火蟲演算法、修正螢火蟲演算法、結合近鄰吸引之螢火蟲演算法、結合近鄰吸引之修正螢火蟲演算法等五種演算法的最佳化結果,歸納新演算法的優勢特性,並將其運用於引擎腳的幾何最佳化。藉由對橡膠材料進行拉伸及鬆弛試驗,並進行實驗數據曲線的擬合結合有限元素法的使用,可以得到適用於引擎腳的橡膠材料之材料模型參數。研究中使用啟發式演算法結合有限元素分析軟體Ansys,分別以靜態剛性幾何最佳化、動態剛性幾何最佳化及同時考慮動態與靜態剛性之幾何最佳化共三種最佳化目標進行引擎腳的外型設計,其中以靜態剛性幾何最佳化確認求得具平滑外型設計之引擎腳所需的設計參數數量;以動態剛性幾何最佳化確認適用於本研究中設定之邊界條件與設計區間的動態剛性目標。最後於同時考慮動態與靜態剛性之幾何最佳化中調整動態與靜態剛性於目標函數中所占的權重比,以求得同時符合動態與靜態剛性設計規格之引擎腳設計。

    This study combines the modified firefly algorithm and firefly algorithm with neighborhood attraction to form a new modified algorithm called modified firefly algorithm with neighborhood attraction. Eleven functions are used for testing optimization algorithms. The results from the proposed algorithm are compared with the results from cuckoo search, firefly algorithm, modified firefly algorithm, and firefly algorithm with neighborhood attraction. The results show that the modified firefly algorithm with neighborhood attraction has better computational efficiency. In this study, a geometry optimization method for design of rubber mounts is developed which combines the heuristic algorithm and commercial finite element analysis program, Ansys. A nonlinear finite element model is created in Ansys software to estimate the stiffness values of the rubber mounts. The curve fitting process is used to obtain both hyperelastic and viscoelastic material parameters of rubber after tensile and relaxation tests. Three optimization cases including static stiffness optimization, dynamic stiffness optimization, and both static and dynamic stiffness optimization have been considered in this research. The designs of rubber mounts to achieve the target values of both the static and dynamic stiffness are presented.

    摘要 i ABSTRACT ii 致謝 xx 目錄 xxi 表目錄 xxv 圖目錄 xxviii 符號說明 xxxii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 引擎腳分類文獻回顧 2 1-2-2 引擎腳幾何最佳化文獻回顧 5 1-2-3 啟發式演算法文獻回顧 9 1-3 研究動機與目標 12 1-4 本文架構 13 第二章 基礎理論 14 2-1 前言 14 2-2 引擎腳幾何最佳化流程 14 2-3 超彈性材料模型 15 2-3-1 Mooney-Rivlin 模型 16 2-3-2 Yeoh模型 16 2-3-3 Ogden模型 17 2-4 線性黏彈性材料模型 17 2-4-1 Maxwell模型 18 2-4-2 Kelvin-Vogit模型 20 2-4-3 Generalized Maxwell模型 21 2-5 剛性值計算 23 2-5-1 靜態剛性 24 2-5-2 動態剛性 24 2-6 啟發式演算法 25 2-6-1 布穀鳥搜尋演算法 25 2-6-2 螢火蟲演算法 30 2-6-3 結合近鄰吸引之螢火蟲演算法 33 2-6-4 修正螢火蟲演算法 36 2-7 本章小結 38 第三章 結合近鄰吸引之修正螢火蟲演算法 39 3-1 前言 39 3-2 結合近鄰吸引之修正螢火蟲演算法流程 39 3-3 近鄰參數k比較 41 3-4 演算法比較 61 3-5 本章小結 81 第四章 材料實驗與實驗數據分析 82 4-1 前言 82 4-2 橡膠材料性質實驗 82 4-2-1 材料拉伸實驗 83 4-2-2 材料鬆弛實驗 85 4-3 實驗數據分析 85 4-3-1 實驗數據曲線擬合 85 4-3-2 材料參數驗證 92 4-4 本章小結 94 第五章 引擎腳剛性實驗與有限元素分析 95 5-1 前言 95 5-2 靜態剛性實驗 95 5-3 動態剛性實驗 99 5-4 有限元素分析驗證 101 5-4-1 靜態剛性驗證 102 5-4-2 動態剛性驗證 105 5-5 本章小結 108 第六章 引擎腳幾何最佳化設計 109 6-1 前言 109 6-2 引擎腳之幾何最佳化流程 109 6-3 引擎腳靜態剛性幾何最佳化 114 6-3-1 不同設計點數目下幾何最佳化結果 116 6-3-2 最佳化結果討論 119 6-4 引擎腳動態剛性幾何最佳化 120 6-4-1 不同動態剛性目標下幾何最佳化結果 121 6-4-2 最佳化結果討論 123 6-5 引擎腳動態與靜態剛性幾何最佳化 124 6-5-1 不同目標權重下幾何最佳化結果 125 6-5-2 最佳化結果討論 134 6-6 本章小結 134 第七章 結論與建議 135 7-1 結論 135 7-2 建議 136 參考文獻 138 附錄A 各演算法之靜態剛性幾何最佳化疊代歷程圖 142

    [1] Y. Yu, N. G. Naganathan, and R. V. Dukkipati, "A literature review of automotive vehicle engine mounting systems," Mechanism and machine theory, vol. 36, no. 1, pp. 123-142, 2001.
    [2] H. C. Lord, "Vibration-dampening mounting," ed: Google Patents, 1930.
    [3] L. Miller and M. Ahmadian, "Active mounts-a discussion of future technological trends," in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 1992, no. 1: Institute of Noise Control Engineering, pp. 421-426, 1992.
    [4] R. H. Marjoram, "Pressurized hydraulic mounts for improved isolation of vehicle cabs," SAE transactions, pp. 1107-1114, 1985.
    [5] R. Shoureshi, P. L. Graf, and T. L. Houston, "Adaptive hydraulic engine mounts," SAE transactions, pp. 516-524, 1986.
    [6] Y. Hagino, Y. Furuishi, Y. Makigawa, N. Kumagai, and M. Yoshikawa, "Active control for body vibration of FWD car," SAE Transactions, pp. 534-542, 1986.
    [7] M. Muller, U. Weltin, D. Law, M. M. Roberts, and T. W. Siebler, "The effect of engine mounts on the noise and vibration behavior of vehicles," SAE Technical Paper, 0148-7191, 1994.
    [8] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications. Springer Science & Business Media, 2013.
    [9] J. J. Kim and H. Y. Kim, "Shape design of an engine mount by a method of parameter optimization," Computers & structures, vol. 65, no. 5, pp. 725-731, 1997.
    [10] N. K. Lee, M. S. Lee, H. Y. Kim, and J. J. Kim, "Design of engine mount using finite element method and optimization technique," SAE Technical Paper, 0148-7191, 1998.
    [11] K. Choi and W. Duan, "Design sensitivity analysis and shape optimization of structural components with hyperelastic material," Computer methods in applied mechanics and engineering, vol. 187, no. 1-2, pp. 219-243, 2000.
    [12] W.-S. Lee and S.-K. Youn, "Topology optimization of rubber isolators considering static and dynamic behaviours," Structural and Multidisciplinary Optimization, vol. 27, no. 4, pp. 284-294, 2004.
    [13] H.-Y. Oh and K.-J. Kim, "Design of shape for visco-elastic vibration isolation element by topological and shape optimization methods," SAE Technical Paper, 0148-7191, 2009.
    [14] N. Kaya, "Shape optimization of rubber bushing using differential evolution algorithm," The Scientific World Journal, vol. 2014, 2014.
    [15] 許藝耀, 橡膠隔振器之黏彈性分析與幾何最佳化設計, 碩士學位, 機械工程學系, 國立成功大學, 2018.
    [16] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in 2009 World congress on nature & biologically inspired computing (NaBIC), IEEE, pp. 210-214, 2009.
    [17] S. Walton, O. Hassan, K. Morgan, and M. Brown, "Modified cuckoo search: a new gradient free optimisation algorithm," Chaos, Solitons & Fractals, vol. 44, no. 9, pp. 710-718, 2011.
    [18] G. Kanagaraj, S. Ponnambalam, N. Jawahar, and J. M. Nilakantan, "An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization," Engineering Optimization, vol. 46, no. 10, pp. 1331-1351, 2014.
    [19] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
    [20] X. Li and M. Yin, "Modified cuckoo search algorithm with self adaptive parameter method," Information Sciences, vol. 298, pp. 80-97, 2015.
    [21] G.-G. Wang, A. H. Gandomi, X. Zhao, and H. C. E. Chu, "Hybridizing harmony search algorithm with cuckoo search for global numerical optimization," Soft Computing, vol. 20, no. 1, pp. 273-285, 2016.
    [22] Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A new heuristic optimization algorithm: harmony search," simulation, vol. 76, no. 2, pp. 60-68, 2001.
    [23] X.-S. Yang, "Firefly algorithms for multimodal optimization," in International symposium on stochastic algorithms, Springer, pp. 169-178, 2009.
    [24] X.-S. Yang, "Firefly algorithm, Levy flights and global optimization," in Research and development in intelligent systems XXVI: Springer, pp. 209-218, 2010.
    [25] S. M. Farahani, A. Abshouri, B. Nasiri, and M. Meybodi, "A Gaussian firefly algorithm," International Journal of Machine Learning and Computing, vol. 1, no. 5, p. 448, 2011.
    [26] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi, "Firefly algorithm with chaos," Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 89-98, 2013.
    [27] H. Wang, W. Wang, H. Sun, and S. Rahnamayan, "Firefly algorithm with random attraction," International Journal of Bio-Inspired Computation, vol. 8, no. 1, pp. 33-41, 2016.
    [28] H. Wang, W. Wang, X. Zhou, H. Sun, J. Zhao, X. Yu, and Z. Cui, "Firefly algorithm with neighborhood attraction," Information Sciences, vol. 382, pp. 374-387, 2017.
    [29] A. Yelghi and C. Köse, "A modified firefly algorithm for global minimum optimization," Applied Soft Computing, vol. 62, pp. 29-44, 2018.
    [30] H. R. Tizhoosh, "Opposition-based learning: a new scheme for machine intelligence," in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), vol. 1: IEEE, pp. 695-701, 2005.
    [31] 王秋閔, 修正螢火蟲演算法於路徑產生機構之最佳化尺寸合成, 碩士學位, 機械工程學系, 國立成功大學, 2018.
    [32] M. Mooney, "A theory of large elastic deformation," Journal of applied physics, vol. 11, no. 9, pp. 582-592, 1940.
    [33] O. H. Yeoh, "Some forms of the strain energy function for rubber," Rubber Chemistry and technology, vol. 66, no. 5, pp. 754-771, 1993.
    [34] R. W. Ogden, "Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 326, no. 1567, pp. 565-584, 1972.
    [35] Ansys® Academic Research Mechanical, Release 18.2, Help System, ANSYS, 2018.
    [36] W. N. Findley and F. A. Davis, Creep and relaxation of nonlinear viscoelastic materials. Courier Corporation, 2013.
    [37] JIS K 6394 加硫橡膠和熱塑性橡膠-動態特性的取得方法(加硫ゴム及び熱可塑性ゴム-動的性質の求め方), 日本規格協会, 2007.
    [38] K. P. Menard and N. Menard, "Dynamic mechanical analysis," Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, pp. 1-25, 2006.
    [39] P. Lévy, Théorie de l'addition des variables aléatoires. Gauthier-Villars, 1954.
    [40] A. M. Reynolds and M. A. Frye, "Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search," PloS one, vol. 2, no. 4, 2007.
    [41] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.
    [42] M. Molga and C. Smutnicki, "Test functions for optimization needs," Test functions for optimization needs, vol. 101, 2005.
    [43] "Vitual Library of Simulation Experiments: Test Functions and Datasets." https://www.sfu.ca/~ssurjano/index.html (accessed 2020).
    [44] J. W. Noordermeer, "Ethylene–propylene elastomers," Encyclopedia of polymer science and technology, 2002.
    [45] JIS K 6251 加硫橡膠和熱塑性橡膠―拉伸特性的取得方法(加硫ゴム及び熱可塑性ゴム―引張特性の求め方), 日本規格協会, 2004.
    [46] JIS K 6263 加硫橡膠和熱塑性橡膠―應力鬆弛的取得方法(加硫ゴム及び熱可塑性ゴム―応力緩和の求め方), 日本規格協会, 2004.
    [47] G. Berselli, R. Vertechy, M. Pellicciari, and G. Vassura, "Hyperelastic modeling of rubber-like photopolymers for additive manufacturing processes," Rapid prototyping technology—Principles and functional requirements, pp. 135-152, 2011.
    [48] R. Ogden, G. Saccomandi, and I. Sgura, "Fitting hyperelastic models to experimental data," Computational Mechanics, vol. 34, no. 6, pp. 484-502, 2004.

    下載圖示 校內:2025-07-22公開
    校外:2025-07-22公開
    QR CODE