簡易檢索 / 詳目顯示

研究生: 黃博偉
Huang, Bo-Wei
論文名稱: 應用條紋反射法量測鏡面形貌
Application of Fringe Reflection Method for Specular Surface Profile Measurement
指導教授: 陳元方
Chen, Terry Yuan-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 138
中文關鍵詞: 條紋反射法鏡面形貌向量式法向量式
外文關鍵詞: fringe reflection method, specular profile, vector method, normal vector method
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究中,主要目的為應用兩種不同的條紋反射法量測鏡面形貌,並探討兩種方法的差異性。兩種方法分別為向量式與法向量式,應用向量式量測小曲率之晶圓、法向量式量測大曲率之凸模具與凹模具,並將實驗量測的結果與表面粗度儀及位移感測計量測結果相比較其準確性,其量測高度變化30 μm之晶圓的均方根誤差為1.69 μm以內,量測高度變化18 mm之凸模具與凹模具的均方根誤差為0.22 mm以內。
    在實驗中發現條紋間距越大,量測的試件形貌波浪狀越明顯;在量測大曲率試件時,為了避免試件斜率過大導致攝影機無法清楚地從試件觀察到螢幕畫面,應適時的傾斜試件再量測;在凹模具x方向積分時,因凹模具形狀關係,若只往左右方向積分會導致積分錯誤,一開始應先判斷試件之幾何形狀是否會造成積分中心軸或中心軸附近之斜率不存在,若有斜率不存在之情形,應先積分斜率存在之區域,再積分斜率不存在之區域,當斜率不存在時需往積分方向尋找鄰近之斜率點,再從此斜率點尋找周圍鄰近之積分結果繼續積分,直至所有斜率點完成積分。

    The main purpose of this study is to measure the specular profile using two different fringe reflection methods as well as exploring the differences between the two methods. The two methods performed in this experiment include the vector method and the normal vector method. They are used to measure the wafer and the male die as well as the female die, respectively. Finally, the results of these experiments are then compared using the surface roughness meter and displacement sensor. The root-mean-square error (henceforth, RMSE) of the wafer with 30 μm of range of height is found to be within 1.69 μm. The RMSE of the male die and female die with 18 mm of range of height is found to be within 0.22 mm.
    In the experiment, it is observed that the larger the pitch of fringe, the more visible the wave profile of the specimen. In order to avoid the slope of the specimen being too large, which may ultimately cause the camera to not be able to clearly observe the image on the screen from the specimen. The specimen must be properly tilted.
    When integrating the x-direction of the slope of a female die, the female die geometry relationship will cause integrations that occur only in horizontal directions to commit integral errors. It should be priorly determined whether or not the geometry of the specimen will cause the slope in the central axis of the integral or the area near it to be absent. If the slope is indeed absent, the area where the slope exists should be integrated first, followed by integrating the area where the slope does not exist. It is also necessary to find the adjacent slope point in the direction of such integration then search for the integration result of the surrounding from the slope point. Continue the integration until all the slope points have completed their respective integration.

    摘要I AbstractII 致謝VI 目錄VII 表目錄X 圖目錄XI 符號說明XXI 第一章 緒論1 1.1 研究背景1 1.2 研究目的3 1.3 文獻回顧4 1.4 本文架構9 第二章 條紋反射法之原理10 2.1 條紋反射法-向量式方法[4]10 2.1.1 條紋偏移公式10 2.1.2 條紋偏移轉換斜率公式17 2.2 條紋反射法-法向量式方法[5]19 2.2.1 法向量計算方法19 2.2.2 法向量轉換斜率積分方法24 2.2.3 攝影機鏡心位置測定方法[5][17][18]26 2.2.4 液晶螢幕之定位方法[5]36 第三章 影像處理與相位解析之原理45 3.1 影像平面之幾何校正方法45 3.1.1 應用形狀函數校正影像[8][19][20]45 3.1.2 影像空格灰階填補[8]54 3.2 中值濾波(Median Filter)[21]56 3.3 影像分割法(Image Segmentation)[21]57 3.4 相位解析58 3.4.1 相位移法[2]58 3.4.2 相位展開法[22]60 第四章 系統校正原理61 4.1 25點高度誤差曲面擬合校正原理61 4.2 LMS校正法[23][24]62 第五章 實驗架設與系統參數64 5.1 向量式實驗架設與系統參數64 5.1.1 向量式實驗架設64 5.1.2 向量式系統參數67 5.2 法向量式實驗架設與系統參數70 5.2.1 法向量式實驗架設70 5.2.2 法向量式系統參數75 第六章 實驗結果與討論82 6.1 向量式晶圓量測82 6.2 法向量式量測89 6.2.1 凸模具量測89 6.2.2 凸模具傾斜後量測106 6.2.3 凹模具量測114 6.3 討論125 第七章 結論與建議132 7.1 結論132 7.2 建議134 參考文獻135

    1.V. Srinivasan, H.C. Liu, and M. Halioua, “Automated Phase-measuring profilometry of 3-D diffuse objects,” Applied Optics, Vol.23, No.18, pp.3105-3108, 1984.
    2.張柏毅,“應用條紋投影法及條紋反射法量測物體表面形貌”,國立成功大學機械工程學系碩士論文,2005。
    3.Y. Kwon, S. Danyluk, L. Bucciarelli, and J. P. Kalejs, “Residual Stress Measurement in Silicon Sheet by Shadow Moire Interferometry,” Journal of Crystal Growth, Vol. 82, No. 1-2, pp. 221-227, Jul 22-25, 1986.
    4.楊韶綸,“條紋反射法之向量解析與應用”,國立成功大學機械工程學系碩士論文,2007。
    5.蘇省任,“具大曲率之反射性表面形貌量測”,國立成功大學機械工程學系碩士論文,2013。
    6.Xianzhu Zhang and Walter North, “Retroreflective grating generation and analysis for surface measurement,” Applied Optics, Vol. 37, No. 13, pp2624-2627, 1998.
    7.Masayuki Yamamoto, Masahito Tonooka, and Toru Yoshizawa, “Surface profile measurement of specular objects by grating projection method,” Proceeding of SPIE Vol. 4567, pp48-55, 2002.
    8.陳延昌,“應用幾何校正於條紋反射法作物體外貌量測”,國立成功大學機械工程學系碩士論文,2008。
    9.Yan Tang, Xianyu Su, Yuankun Liu, and Hailong Jing, “3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry,” OPTICS EXPRESS, Vol. 16, No.19, 2008.
    10.Hongwei Guo, Peng Feng, and Tao Tao, “Specular surface measurement by using least squares light tracking technique,” Optics and Lasers in Engineering, Vol.48, pp.166-171, 2010.
    11.Hongwei Zhang, Shujian Han, Shugui Liu, Shaohui Li, Lishuan Ji, and Xiaojie Zhang, “3D shape reconstruction of large specular surface,” Applied Optics, Vol. 51, No. 31,2012.
    12.Chunfeng Guo, Xiaoyan Lin, Anduo Hu, and Jun Zou, “Improved phase-measuring deflectometry for aspheric surfaces test,” Applied Optics, Vol. 55, No. 8,2016.
    13.Markus C. Knauer, Jürgen Kaminski, and Gerd Häusler, “Phase Measuring Deflectometry: a new approach to measure specular free-form surfaces,” Proceeding of SPIE Vol.5457, pp.366-376, 2004.
    14.Tian Zhou, Kun Chen, Haoyun Wei, and Yan Li, “Improved method for rapid shape recovery of large specular surfaces based on phase measuring deflectometry,” Applied Optics, Vol. 55, No. 10, 2016.
    15.Lei Huang, Junpeng Xue, Bo Gao, and Mourad Idir, “Three-dimensional shape measurement with modal phase measuring deflectometry,” Proceeding of SPIE 10449, 1044909, 2017.
    16.Z. Wu and L. Li, “A line-integration based method for depth recovery from surface normals,” Computer Vision, Graphics, and Image Processing 43, pp. 53-66, 1988.
    17.R. W. Webster and Y. Wei, ““ARINE P.” – A Robot Golfing System Using Binocular Stereo Vision and a Heuristic Feedback Mechanism,” Proceeding of the 1992 IEEE/RSJ International Conference on Intelligent Robots and System, pp. 2027-2034, 1992.
    18.黃稚桓,“具雙重模式光學三維量測系統之建構”,國立成功大學機械工程學系碩士論文,2009。
    19.Yuan Y. Tang and Ching Y. Suen, “Image Transformation Approach to Nonlinear Shape Restoration,” IEEE Systems, Man, and Cybernetics Society , Vol. 23, No.1, 1993.
    20.Singiresu S. Rao, “The Finite Element Method in Engineering,” Oxford, New York, 2004.
    21.繆紹綱,“數位影像處理”,台灣培生教育出版股份有限公司,2003年。
    22.William W. Macy, “Two-dimensional fringe-pattern analysis,” Applied Optics, Vol. 22, No.23, pp. 3898-3901, 1983.
    23.鄭仲豪,“應用相位移陰影疊紋量測高溫下晶圓的變形”,國立成功大學機械工程學系碩士論文,2002。
    24.陳璟照,“應用陰影疊紋法量測電子元件的共面性與翹曲量”,國立成功大學機械工程學系碩士論文,2008。
    25.張良維,“應用數位影像關係法於生物組織變形之量測”,國立成功大學機械工程學系碩士論文,2016。

    下載圖示 校內:2024-06-27公開
    校外:2024-06-27公開
    QR CODE