簡易檢索 / 詳目顯示

研究生: 陳俊廷
Chen, Jyun- Ting
論文名稱: 熱機處理對Ti-7.5Mo合金機械性質的影響
Effect of thermomechanical treatment on mechanical properties of Ti-7.5Mo alloys
指導教授: 陳瑾惠
Ju, Chien-Ping
朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 120
中文關鍵詞: 鈦合金熱機處理機械性質微觀結構
外文關鍵詞: titanium alloys, thermomechanical treatment, mechanical properties, microstructure
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由CMRT實驗室發展出的Ti-7.5Mo 合金於1999年通過美國專利申請(U.S. Patent No. 6409852),為一深具實用潛力的鈦合金。本研究對Ti-7.5Mo合金進行不同的熱機處理,藉以探討其對機械性質,微觀結構與析出相的影響。
    實驗結果顯示、Ti-7.5Mo合金經過熱滾壓,再進行T1℃固熔熱處理t1後,合金結構為細針狀麻田散鐵的外觀,主要的相屬介穩的α”相。其彎曲彈性模數為55GPa,拉伸彈性模數為70GPa。微結構,主要相與機械性質皆相近於鑄造Ti-7.5Mo合金。
    Ti-7.5Mo經過熱滾壓後,然後進行T1℃固熔熱處理t1後,再進行T3℃時效熱處理t2分鐘後空冷,可以得到與Ti-6Al-4V相近的機械性質(YS: 871 MPa、UTS: 1042 MPa and EL: 14 %)。

    Ti-7.5Mo alloy, developed from CMRT Lab, had been acquired the U.S. Patent (U.S. Patent No. 6409852) in 1999. It is a potential alloys for medical device. Ti-7.5Mo performed different thermomechanical treatment in this work to discuss effect on the mechanical properties, microstructure and precipitated phase.
    Experimental results indicate that after hot rolling and then performing solution-treatment at T1℃ for t1, Ti-7.5Mo comprised primarily of a metastable α” phase also with a fine, acicular martensitic morphology. The bending modulus is 55GPa; the tensile modulus is 70GPa. It is similar to as-cast Ti-7.5Mo in microstructure, primarily phase and modulus.
    In this work, Ti-7.5Mo after solution-treatment at T1℃ for t1 and then aging at T3℃ for t2 followed by air cooling has similar mechanical properties(YS: 871 MPa、UTS: 1042 MPa and EL: 14 %) to Ti-6Al-4V.

    ABSTRACT 1 中文摘要 2 誌謝 3 CATALOG 4 FIGURE CATALOG 9 TABLE CATALOG 14 SYMBOLS IN THIS WORK 15 CHAPTER 1 INTRODUCTION 17 1-1 INTRODUCTION OF TITANIUM 17 1-2 INTRODUCE OF TITANIUM ALLOYS 19 1-3 CLASSIFICATION OF TITANIUM ALLOYS 21 1-4 GRADES OF TITANIUM ALLOYS 22 1-5 THE DEFINITION OF BIOMATERIALS 24 1-6 CLASSIFICATION OF BIOMATERIALS 25 Ceramics materials 25 Biopolymers 26 Biocomposite 26 Metallic materials 27 Stainless steels 31 Co-based alloys 33 Pure Titanium 36 CHAPTER 2 BASIC THEORIES AND PAPER REVIEW 40 2-1 CLASSIFICATION OF TITANIUM ALLOYS 40 Alpha -alloys 42 Alpha & Beta alloys 43 Beta-alloys 43 2-2 WOLFF'S LAW 46 2-3 STRESS-SHIELDING EFFECT 46 2-4 MECHANISMS OF STRENGTHENING IN METALS 49 Strengthening by grain size reduction 50 Solid-solution strengthening 50 Strain hardening 51 2-5 HEAT TREATMENT 52 Solution heat treatment 52 Aging heat treatment 53 CHAPTER 3 EXPERIMENTAL METHODS AND MATERIALS 55 3-1 EXPERIMENTAL PROCEDURE 55 3-2 MATERIALS 56 3-3 ALLOYS MELTING AND CASTING 56 3-4 HOT ROLLING PROCESS 59 3-5 HEAT TREATMENT 60 3-6 THREE POINT BENDING TEST 61 3-7 TENSILE TEST 63 3-8 XRD PHASE ANALYZE 64 3-9 SURFACE ETCHING 64 3-10 MICROHARDNESS TEST 64 3-11 SCANNING ELECTRON MICROSCOPE (SEM) 65 CHAPTER 4 RESULTS AND DISCUSSION 66 4-1 AFTER HOT ROLLING, PERFORM DIRECT AGING AT T3℃ FOR DIFFERENT TIME WITHOUT SOLUTION-TREATMENT 66 4-1-1 Optical micrographs and X-ray diffraction profile analysis 66 4-1-2 tensile mechanical properties of directly aging at T3℃ for different time without solution-treatment 71 4-2 AFTER HOT ROLLING, PERFORM THE SOLUTION-TREATMENT FOR DIFFERENT TIME AND TEMPERATURE 74 4-2-1 optical micrographs and X-ray diffraction profiles analysis 74 4-2-2 bending properties of Ti-7.5Mo after solution-treatment for different time and temperature 81 4-2-3 the tensile mechanical properties of Ti-7.5Mo after solution-treatment at T1℃ for different time 85 4-2-4 SEM fractographs of Ti-7.5Mo after solution-treatment at T1℃ for different time 87 4-3 SOLUTION-TREATMENT AT T1℃ FOR T1 AND THEN AGING HEAT TREATMENT AT T3℃ FOR DIFFERENT TIME FOLLOWED BY AIR COOLING 89 4-3-1 optical micrographs and X-ray diffraction profile analysis 90 4-3-2 The tensile mechanical properties of Ti-7.5Mo after aging at T3℃ for different time followed by air cooling 96 4-4 AFTER HOT ROLLING, PERFORM AGING AT T3℃ FOR T2 FOLLOWED BY DIFFERENT COOLING METHODS 98 4-4-1 optical micrographs and X-ray diffraction profiles analysis 98 4-4-2 Tensile mechanical properties of Ti-7.5Mo after aging at T3℃ for t2 followed by differently cooling methods 105 4-4-4 SEM fractographs of the solution-treatment at T1℃ and the aging at T3℃ 108 4-5 MICROHARDNESS ANALYSIS 112 CHAPTER 5 CONCLUSIONS 114 CHAPTER 6 REFERENCE 115 自述 120

    ASM - Aerospace Specification Metal, Inc
    Bagariaskii IA, Nosova GI and Tagunova TV. “Factors in the formation of metastable phase in titanium-based alloys [Engl. trans.]. Sov Phys Dokl”, 3,1014-8, 1959.
    Bania PJ. “Beta titanium alloys and their role in the titanium industry.” In:Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990's.Warrendale, PA: TMS, p. 3-14, 1993.
    Beder, O.E., Eade, G &Wash, S. ”An investigation of tissue tolerance to titanium metal implants in dogs”, 1956
    D.A Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys”second edition, CRC Press, USA, 2004.
    Eylon, D. and Froes, F.H., “Titanium casting – A review, Titanium Net Shape Technologies”, 155-178, The Metallurgical Society, 1984.
    F.J. Gil, M.P. Ginebra, J.M. Manero, J.A. Planell, “Formation of α-Widmanstätten structure: effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy”Journal of Alloys and Compounds 329, 142-152 , 2001.
    Furuhara, T. Maki, T. Makino, “Microstructure control by thermomechanical processing in β-Ti-15-3 alloy ”, Journal of Materials Processing Technology, 218-323 , 2001
    Hao,YL Li,SJ Sun,SY Zheng,CY Yang,R, “Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.”, Acta Biomaterialia, 2007
    Hoeppner DW. Chandrasekarn V. “Fretting in orthopaedic implants: a review. “ Wear, 173, 189-97, 1994
    H.I. Aaronson, “Decomposition of Austenite by Diffusional Process”p. 385. ,Interscuence, New York, 1962.
    Ida, K., Tsutsumi, S., Takeuchi, M. and Togaya, T., “A New Dental Casting Machine Utilizing Argon Arc Fusing and Argon Gas Pressing”, Sep. 1979.
    J.L. Murray, “Binary alloy phase diagrams, Vol. 3” , edited by massalski TB, J.L Murray, L.H. Bennett and H. Baker, American Society for Metals, Park, Ohio: ASM, pp. 1637-1641, 1986.
    John M. (Tim) Holt, “Structural Alloys Handbook edition” , Technical Ed; C. Y. Ho, Ed., CINDAS/Purdue University, West Lafayette, IN, 1996.
    Kihlstadius, D., Rammed Graphite Molds, “Metals Handbook 9th ed.”, Vol15, ASM International, Metal Park, Ohio, 1985
    Materials Properties Handbook: “Titanium Alloys”, R. Boyer, G. Welsch, and E. W. Collings, eds. ASM International, Materials Park, OH, 1994.
    Marc Long, H.J. Rack, “Titanium alloys in total joint replacement-a materials science perspective”, Biomaterials, 1998
    McAee PC, Rack HJ. “Titanium alloys in total joint replacement materials science perspective.” Biomaterials, 19, 1621-39, 1998.
    M. Enomoto, M Fujizam, Metall. Trans. 21A, 1990
    Molchanova, E. K., “Phase Diagrams of Titanium Alloys.”, Israel Program for Scientific Trandslations, Jerusalem, 1965
    Newman, J.R., Eylon, D. and Throne, J.K., “Titanium and Titanium Alloys”, Metals Handbook 9th ed., Vol.15, ASM International, Metals Park, Ohio, 1985
    Park, J.B. and Lakes, R.S., “Biomaterials: An Introduction, 2nd Edition”, Plenum Pub. Corp., New York, London, 1992.
    Philadelphia, “Annual book of ASTM Standards”, Part 46, American Society for Testing and Testing Materials, p.579 , 1980.
    Rengen Ding, Ian Pjones and Huisheng Jiao, “Effect of Mo and Hf on the mechanical properties and microstructure of Nb–Ti–C alloys”, Elsevier B.V, 2007.
    Rao, S., T. Ushida, T. Tateishi, Y. Okazaki and S. Asao, "Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells". Bio-Medical Materials Engineering, 6, 79-86., 1996.
    Stwertka, Albert. "Titanium". Guide to the Elements (Revised ed.). Oxford University Press. pp. 81–82. ISBN 0-19-508083-1, 1998.
    Sujata V.Bhat, “Biomaterials, 2nd Edition”, Alpha Science International, Ltd , 2005.
    Steinemann SG. “Corrosion of titanium and titanium alloys for surgical implants.” Ti'84 Science and Technology. Ljering G, Zwicker U, Bunk W. editors, 1373, 1984.
    Vyvyan Howard, "Toxicopathologist", University of Liverpool, APRIL 2003
    Williams DF, “Definitions in biomaterials.”, Proceedings of a consensus conference of the European society for biomaterials, Chester, England, March 3-5, Vol 4, Elsevier, New York, 1986.
    Wolff J, Das Gesetz Der Transformation Der Knochen, Hirshwald Verlag, Berlin, 1892.
    W.F. Ho, C.P, Ju,J.H. Chen Lin, “Structure and propertyes of cast binary Ti-Mo Alloys”, 1999.
    Wilson SAV, Freeman MAR, editors, “The Scientific Basis of Joint Replacement”, Wiley, New York, 1977.
    林殿傑, “鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究”, 成功大學博士論文, 2002.
    鄭文偉, “添加合金元素對鈦或鈦合金鑄造性及性質研究”, 成功大學博士論文, 2002.
    楊哲青, “生醫用鈦合金之滑動磨潤性質研究”, 成功大學碩士學位論文, 2003.
    林家緯, “鑄造鈦-鉬合金疲勞性質研究”, 成功大學博士論文, 2004
    洪炎輝, “生醫用鈦合金(Ti-Nb系)之合金開發及機械性質研究”, 台灣大學博士論文, 2004.
    林士哲, “β型鈦合金之機械性質研究”, 成功大學學士論文, 2006
    林士哲,”熱機處理對鈦-鉬合金機械性質的影響” , 成功大學碩士論文, 2008.
    陳彥均,”鈦鉬合金機械性質研究” , 成功大學學士論文, 2009.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE